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Abstract 
Many real-life datasets, such as those produced by 
gene expression studies, exhibit complex substruc-
tures at various levels of granularity and thus do 
not have unique well-defined numbers of clusters. 
In such cases, it is important to be able to trace the 
evolution of the individual clusters as the number 
of dimensions of the clustering is varied. While the 
dendrograms produced by bottom-up clustering 
methods such as hierarchical clustering are very 
useful for this purpose, the approach is known to 
produce unreliable clusters due to its instability 
w.r.t. resampling. Moreover, hierarchical clustering 
does not apply to overlapping (bi)clusters, such as 
those obtained in gene expression studies. On the 
other hand, the instability w.r.t. the initialization of 
top-down methods, such as k-means, prevents the 
comparison between clusters obtained at different 
dimensionalities. In this paper, we present a 
method for constructing generalized dendrograms 
for overlapping biclusters, which depict the evolu-
tion of the biclusters as their number is varied. An 
essential ingredient is a stable biclustering method 
based on positive tensor factorization of a number 
of nonnegative matrix factorization runs. We apply 
our approach to a large colon cancer dataset, which 
shows several distinct subclasses whose dimen-
sional evolution must be carefully analyzed to en-
able a more meaningful biological interpretation 
and sub-classification. 

1 Introduction 
Biological processes are extremely complex, showing a hi-
erarchical organization at various levels of granularity. On 
the other hand, many clustering methods require the number 
of clusters to be given as input. But in real gene expression 
data [Eisen et al., 1998] one cannot unequivocally determine 
a well-defined number of clusters, as coarser-grained clus-
ters may exhibit progressively finer-grained structure. For 
example, Figure 1 shows the evolution of the error of non-
negative decompositions (biclusterings) as the number of 
clusters is increased in the case of two datasets: a synthetic 

dataset with 5 biclusters (Figure 1a) and a large colon can-
cer dataset (Figure 1b).  

Note that in the synthetic dataset, a well-defined number 
of clusters (nc = 5) can be discerned, while the colon cancer 
dataset shows a steep drop in error until nc = 3, followed by 
a series of progressively smaller ones. The latter could rep-
resent either overfitting or finer-grained substructure and 
only a more in-depth biological analysis can settle the issue. 
Anyhow, it is not enough from a biological point of view to 
determine a unique number of clusters and to analyze the 
resulting clusters at that fixed dimensionality. Instead, we 
need to perform some sort of multi-scale analysis of the 
clusters and their evolution as the dimensionality (nc) of the 
clustering is varied. 

For this, it is essential to be able to determine the rela-
tionships between the clusters generated at different nc

1, 
which is possible only if we can guarantee the stability of 
the clusters and if we have a mathematically sound method 
of comparing biclusters. (We deal with biclusters [Cheng 
and Church, 2000] since in the case of gene expression data, 
as in many other domains, objects/genes tend to be corre-
lated only for certain subsets of samples, i.e. specific bio-
logical contexts.) 

We achieve biclustering stability using the meta-
clustering approach of [Badea, 2005; Badea and Tilivea, 
2007], which is based on a positive tensor factorization 
(PTF) of the biclusters obtained in various repeated cluster-
ing runs. Bicluster comparisons are “built into” this ap-
proach in an elegant manner. 

These two key features allow us to construct a series of 
decompositions at varying nc and to trace the evolution of 
the individual clusters as nc changes. This generalizes hier-
archical clustering dendrograms to a more complicated set-
ting where items that have been grouped (at a certain nc) can 
be separated later on at a lower dimensionality. 

Hierarchical clustering is probably the most frequently 
used clustering method in the domain of gene expression 
data analysis [Eisen et al., 1998]. This is due not only to its 
simplicity, but also to the very intuitive nature of the cluster-
ing dendrograms it produces, which graphically depict the 
evolution of clusters at various dimensionalities. Since 
                                                 

1 For example, we may want to analyze in more detail the clus-
ter merges and splits as nc is varied. 
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choosing a unique well-defined number of clusters is usu-
ally problematic in the case of gene expression data, being 
able to trace the dimensional evolution of clusters is essen-
tial in this domain. 

However, extensive experimental evaluations [Thala-
muthu et al., 2006] have demonstrated that hierarchical clus-
tering shows mediocre performance especially for noisy 
data, with many “unrelated” (or, so called “scattered”) 
genes. Thus, it might seem that performance has been sacri-
ficed for better visualization and that an inherent trade-off 
exists between the two. In the following we show that we 
can trace the dimensional evolution of clusters in a more 
complicated setting involving biclustering based on PTF by 
developing a generalization of dendrograms for the case of 
overlapping biclusters. 
 

a. synthetic data (5 biclusters) 

 
b. colon adenocarcinoma 

 
Figure 1. The dimensional evolution of NMF decomposi-
tion errors for a synthetic (a) and a real-life dataset (b). 

2 Stable meta-clustering with PTF 
As already mentioned in the Introduction, the ability of clus-
tering genes and samples simultaneously (‘biclustering’) is 
essential for analyzing gene expression data, where genes 
tend to be co-expressed only for certain subsets of samples, 
corresponding to specific biological contexts. In the follow-
ing, we use the biclustering approach based on positive ten-
sor factorizations (PTF) of [Badea, 2005; Badea and Tilivea, 
2007], which we briefly review here. The increased stability 
of the meta-clustering approach is essential for being able to 
follow the dimensional evolution of biclusters. 

2.1 Biclustering using Nonnegative Matrix  
Factorizations with offset 

An elegant method of biclustering consists in factorizing the 
gene expression matrix X as a product of an ns nc (samples 

 clusters) matrix A and an nc ng (clusters  genes) matrix  
S 2 

randomized 
data gc cgscsg SoSAX               (1) 

subject to additional nonnegativity constraints:   
0,0,0 gcgsc SoSA                (2) 

which express the obvious fact that expression levels and 
cluster membership degrees cannot be negative. 

Factorization (1) differs from the standard Nonnegatuive 
Matrix Factorization (NMF) [Lee and Seung, 1999; 2000] 
by the additional “gene offset” So, whose main role consists 
in absorbing the constant expression levels of genes, thereby 
making the cluster samples Scg “cleaner”. real data 

The factorization (1-2) can be regarded more formally as 
a constrained optimization problem: 

gs
sgF SoeSAXSoeSAXSoSAf

,

22

2
1||||

2
1),,(min  (3) 

subject to the nonnegativity constraints (2). This problem 
can be solved using an iterative algorithm with the follow-
ing multiplicative update rules (which can be easily derived 
using the method of Lee and Seung [Lee and Seung, 2000]): 

randomized 
data 

sc
T

sc
T

scsc SSoeSA
SXAA  

cg
T

cg
T

cgcg SoeSAA
XA

SS               (4) 

g
T

g
T

gg SoeSAe
Xe

SoSo  
real data 

where e is a column vector of 1 of size equal to the number 
of samples and   is a regularization parameter (a very small 
positive number). 
                                                 

2 Xsg represents the gene expression level of gene g in sample s, 
Scg the membership degree of gene g in cluster c and Asc the mean 
expression level of cluster (biological process) c in sample s. 
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The algorithm initializes A, S and So with random entries, 
so that (slightly) different solutions may be obtained in dif-
ferent runs. (This is due to the non-convex nature of the 
optimization problem (3), which in general has many differ-
ent local minima.)  

We can view the different solutions obtained by the gen-
eralized NMFO

 algorithm as overfitted solutions, whose con-
sensus we’ll need to construct.  

We have observed experimentally that adding offsets to 
standard NMF leads to significant improvements in the 
quality of the recovered clusters. 

More precisely, the genes with little variation are recon-
structed by the standard NMF algorithm from combinations 
of clusters, while NMFO uses the additional degrees of free-
dom So to produce null cluster membership degrees Scg for 
these genes. Moreover, NMFO recovers with much more 
accuracy than standard NMF the original sample clusters, 
the standard NMF algorithm being confused by the cluster 
overlaps. This improvement in recovery of the original clus-
ters is very important in our application, where we aim at a 
correct sub-classification of samples. 

2.2 Meta-clustering with PTF  
Unfortunately, virtually all clustering methods that are cur-
rently used for gene expression data analysis tend to pro-
duce highly unstable clusters, especially when clustering 
genes. (The instability manifests itself either w.r.t. the ini-
tialization of the algorithm, as in the case of k-means and 
NMF, or w.r.t. small perturbations of the dataset in the case 
of deterministic algorithms, such as hierarchical clustering.) 

A frequently used method to obtain more stable clusters 
consists in building a consensus of several individual clus-
terings constructed from different NMFO initializations. 

More precisely, starting with a number of NMFO runs 

riSoeSAX iii ,...,1)()()(                 (5) 

a consensus biclustering is constructed using a Positive Ten-
sor Factorization (PTF) [Welling and Weber, 2001] of the 
biclusters3, which simultaneously determines the bicluster 
correpondence  and the consensus biclustering ( , ) 
[Badea, 2005; Badea and Tilivea, 2007]: 

cn

k kgskkicgicics SA
1 )()()(            (6) 

where s are samples, g, genes, c clusters and k metaclusters 
(or “consensus clusters”).4  and  represent the consensus 
of A(i) and S(i) respectively. More precisely, the columns k 
of  and the corresponding rows k  of   make up a base set 
of bicluster prototypes k k  out of which all biclusters of 
all individual runs can be recomposed, while  encodes the 
(bi)cluster-metacluster correspondence. The factorization 
(6) can be computed using the multiplicative update rules 
from [Badea, 2005; Badea and Tilivea, 2007]: 
 
                                                 

3 A tensor factorization is needed instead of a matrix factoriza-
tion since biclusters are matrices. 

4 To simplify the notation, the indices i and c were merged into 
a single index (ic). 

)]()[(
)()(
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)]([
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)]()[(
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where ‘ ’ and ‘ ’ represent element-wise multiplication 
and division of matrices, while ‘ ’ is ordinary matrix multi-
plication. After convergence of the PTF update rules, the 
rows of  are normalized to unit norm to make the gene 
clusters directly comparable to each other, whereas the col-
umns of  are normalized such that  (r is the 

number of runs). Then, NMFO initialized with 
ci kic r

, )(

,( ), 0  is 
run5 to produce the final factorization  
X  A S + e So. 

The nonnegativity constraints of PTF meta-clustering are 
essential both for allowing the interpretation of k k. as 
consensus biclusters, as well as for obtaining sparse factori-
zations. In practice, the rows of the correspondence matrix 

 tend to contain typically one or only very few significant 
entries. 

3 PTF for tracing the dimensional evolution 
of biclusters 

Given a stable set of biclusters (A(i), S(i), So(i)) generated for 
progressively larger numbers of clusters 

},...,2{
maxcc nin : 

,)(

1

)()( i
g

i

c

i
cg

i
scsg SoSAX               (8) 

we aim at determining the relationships between the bi-
clusters at nc = i and those at larger nc (e.g. nc = i + 1). (For 
example, bicluster c1 at nc = i may be very similar to biclus-
ter c2 at nc = i + 1. Or, bicluster c3 at nc = i may result from 
merging biclusters c4 and c5 at nc = i + 1.) 

To achieve this, we start with a “reference” factorization 
 that is fine-grained enough to ap-

proximate any lower-dimensional factorization (for example 
with 

),,( )()()( refrefref SoSA

cc nn
max

6). 
We then express the biclusters (A(i), S(i), So(i)) obtained at 

various dimensionalities in terms of the fine-grained bi-
clusters of the reference factorization as follows: 
                                                 

g
ii

gSo 0
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)(

i
i r)(
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maxcn

5 0 is obtained from the 1-dimensional NMF decomposition 
 with the normalization . 

6 We can estimate using the error curve as in Figure 1. 
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where , ,  for c � 0 and  
for k � 0. 
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More precisely, (9) can be expressed as an optimization 
problem 
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Note that (10) is similar to the positive tensor factoriza-
tion (6), except that in (10) only   are free variables. 
Moreover, since in (10) the factorizations (i) and the refer-
ence factorization have different dimensionalities, the con-
sensus tensor  may contain several significant en-

tries , ,… on a given row c (corresponding to a 
cluster c formed by superposing (merging) reference clus-
ters k1, k2, …). 
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It can be shown that the decomposition (10) is comput-
able using the following multiplicative update rule: 
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where we have merged indices i and c as (ic): 
) ,  ,           (12) (

)(
i

ckkic
)(

)(
i

scics AA )(
)(

i
cggic SS

The cluster correspondence matrix  generalizes hierar-
chical clustering dendrograms and will be called in the fol-
lowing “generalized clustergram”. For example, Figure 2.c 
shows  for the clustering dendrogram from Figure 2.a.  
can thus be used to trace the evolution of individual clusters 
as nc is varied. In the case of hierarchical clustering, once 
two items have been grouped (at a given nc), they remain 
grouped for all smaller nc. The clustergram from Figure 2.b 
and the generalized clustergram (correspondence matrix) 
from Figure 2.c can be used to describe more complex clus-
ter evolutions such as that shown in Figure 3, which pre-
sents the evolution of PTF decompositions for nc ranging 
from 2 to 8 using a 15-dimensional reference factorization 
of a synthetic dataset with 5 partially overlapping biclusters 
(for reasons of layout, Fig. 3 presents the transpose of ). 

For visualization purposes, the rows c of kic)(  were 
permuted such that the cluster c from decomposition i 
matches cluster c of decomposition i – 1 for all i and c = 1, 
…, i – 1. This was achieved in a greedy manner as follows: 

for  i = 2 …  
max

 for c = 1, …, i – 1 
cn

   let maxk  )1(maxarg i
ckk

   and s.t. c' is not assigned )(
''max max

maxarg i
kccc

   assign row c  of decomposition i to position c max
 assign remaining row of decomposition i to position i 

 

 
 

 
 
Figure 2.  generalizes hierarchical clustering dendrograms. 
A hierarchical clustering dendrogram (a.) with its associated 
clustergram (b.) and generalized clustergram  (c.) While 
the dendrogram is tree-like, the clustergram and the general-
ized clustergram   may be more general. 
 

 

1 2 3 4 5 6 7 

a. dendrogram

 
Figure 3. The generalized clustergram (correspondence 
matrix) T  for a synthetic dataset with 5 partially overlap-
ping biclusters using a 15-dimensional reference factoriza-
tion (only nc=2,...,8 are shown) 

The tests of the algorithm on syn

 

1 2 3 4 5 6 7 
b. clustergram

c.

thetic datasets showed 
that it is quite effective at tracing the incremental evolution 
of the individual biclusters as the number of clusters is in-
creased, despite the variability of the individual NMF clus-
tering runs. (As far as we know, this is the first algorithm to 
achieve this.) For example, Figure 3 shows that the clusters 
for nc=5 are essentially preserved when going to nc=6, ex-
cept for cluster 3:5 (i.e. cluster 3 for nc=5), which splits into 
two overlapping clusters 2:6 and 5:6. 
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Figure 4. The generalized clustergram (correspondence 
matrix) T for the colon adenocarcinoma dataset using a 15-
dimensional reference factorization (only nc=2,...,8 are 
shown) 

4 Multi-scale analysis of a colon cancer data-
set 

We have applied our approach to a large gene expression 
dataset of colon adenocarcinoma. Our preliminary investiga-
tions of this dataset have shown that the disease has several 
distinct subclasses, but no unique well-defined dimensional-
ity could be determined (as discussed in the Introduction – 
see also Figure 1.b).  

The most frequent colon cancer type, sporadic colon 
adenocarcinoma, is very heterogeneous and its best current 
classification based on the presence or absence of microsa-
tellite instabilities (MSI-L, MSI-H and MSS) [Jass et al., 
1999] is far from ideal from the point of view of gene ex-
pression. A more refined analysis of the biclusters generated 
at different dimensionalities is therefore needed in order to 
be able to determine the biologically relevant subclasses of 
this disease. 

To obtain a more accurate subclassification based on gene 
expression profiles, we have applied our approach to a large 
dataset (204 samples) containing 182 colon adenocarcinoma 
samples from the expO database [expO] and 22 control 
(“normal”) samples from [Hong et al., 2007]. (All of these 
had been measured on Affymetrix U133 Plus 2.0 chips.)  

The combined raw scanning data was preprocessed with 
the RMA normalization and summarization algorithm [Iri-
zarry et al., 2003]. (The logarithmic form of the gene ex-
pression matrix was subsequently used, since gene expres-
sion values are approximately log-normally distributed.) 
After eliminating the probe-sets (genes) with relatively low 
expression as well as those with a nearly constant expres-
sion value7, we were left with 3666 probe-sets. Finally, the 
Euclidean norms of the expression levels for the individual 
genes were normalized to 1 to disallow genes with higher 
absolute expression values to overshadow the other genes in 
the factorization. 

To estimate the number of clusters (nc), we compared the 
dimensional evolution of the decomposition error 
                                                 

7 Only genes with an average expression value over 100 and 
with a standard deviation above 150 were retained. 

FFrel XSoeSAX /  of PTF meta-clustering of 
the real dataset with that corresponding to a randomized 
dataset 8 (similar to [Kim and Tidor, 2003], see Figure 1.b). 

Figure 4 depicts the evolution of PTF decompositions of 
the colon adenocarcinoma dataset for nc ranging from 2 to 8 
using a 15-dimensional reference factorization. Note that as 
we go from nc = 2 to nc = 3, a new cluster appears, involving 
fine-grained subclusters (rows) k = 7,14,6,2. This cluster is 
largely conserved at nc = 4, where another new cluster (in-
volving k = 4,8) is introduced. At nc = 5, the latter suffers a 
complex transition: it essentially splits in two, but each of 
the two subclusters picks up additional contributions, so that 
they end up as clusters 5:5 (corresponding to k = 8,7,9) and 
respectively 2:5 (k = 4,15). The fact that additional sub-
clusters are involved at nc = 5 as compared to nc = 4 sug-
gests that there are at least 5 biologically significant clus-
ters. 

At nc = 6, the main change w.r.t. nc = 5 consists in the ap-
pearance of cluster 4:6 (k = 8,2,10).9 It may be interesting to 
note that subcluster k = 10 is formed virtually only by 
probesets associated to the XIST (‘X inactive-specific tran-
script’) gene, which is the major effector of X chromosome 
inactivation (normally expressed only in females by inacti-
vated X chromosomes). Actually, cluster 4:6 is generated, 
together with 5:6, from 5:5. At nc = 7, the two clusters 4:6 
and 5:6 are merged and split again to 2:7 (which is almost 
identical to 5:5) and 7:7 (which contains subclusters k = 
2,10). Therefore, the transition from nc = 5 to nc = 7 amounts 
to adding two new clusters 4:7 and 7:7.  

For a biological interpretation of the biclusters, we have 
used several high-throughput studies of microsatellite-
instability in colon cancer (e.g. [Banerjea et al., 2004]). 
Clusters 1:5, 1:6 and 3:7 correspond to a very well defined 
microsatellite stable subtype (MSS as defined in [Jass et al., 
1999]). More specifically, the keratin 23 gene, which we 
find specifically over-expressed in these clusters was previ-
ously known to be specific to MSS colon cancer [Birkenk-
amp et al., 2007]. Some of the most important genes in-
volved in this bicluster are the following transcription fac-
tors: ASCL2, DACH1, FOXQ1, EREG, TNRC9, all previ-
ously related to colon cancer and which presumably control 
the various biological processed involved in microsatellite 
stable colon carcinoma.  

Clusters 5:5, 5:6, 2:7 correspond to the microsatellite in-
stability-high (MSI-H) subtype, which very interestingly 
over-expresses the developmental homeobox genes 
HOXC6, PRRX1, HOP. Moreover, the genes overexpressed 
in this cluster are typically overexpressed in MSI-H tumors 
                                                 

8 The randomized dataset was obtained by randomly permuting 
for each gene its expression levels in the various samples. The 
original distribution of the gene expression levels is thereby pre-
served. 

9 Note that in our method, unlike in the case hierarchical clus-
tering, subclusters that have been merged at a given dimension (for 
instance k=7,8,9 at nc=5) can later on be separated if the this im-
proves the overall clustering (e.g. at nc=6, k=8 is separated from 
the other two subclusters and merged with k=2,10). 
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with BRAF (rather than KRAS) mutations (using [Kim et 
al., 2006]). 

The normal colon samples are grouped in clusters 4:5, 
3:6, 5:7, whose genes are down-regulated in colon cancer. 
For instance, the down-regulation of carcinoembryonic anti-
gen CEACAM7 is an early event in colorectal tumorigene-
sis [Thompson et al., 1997], while the critical cell cycle 
gene CDKN2B is frequently inactivated in colon cancer 
[Ishiguro et al., 2006]. 

Our approach to tracing the dimensional evolution of bi-
clusters has proved a useful tool for analyzing the complex 
subclassification of colon adenocarcinoma that seems to 
emerge from such gene expression studies. 

5 Conclusions  
Many real-life data mining datasets and most gene expres-
sion datasets exhibit complex substructures at various levels 
and thus do not have unique well-defined numbers of clus-
ters. Therefore, it is essential to be able to trace the evolu-
tion of gene expression biclusters as the number of dimen-
sions of the clustering is varied. 

Hierarchical clustering dendrograms are visually very in-
formative in this regard, but have certain essential draw-
backs related to their rather mediocre performance for noisy 
data, as well as to their unidimensional nature (for gene ex-
pression data, biclustering methods are more appropriate, 
since genes tend to be co-expressed only for certain subsets 
of samples, in certain specific biological contexts). Also, 
hierarchical clustering produces tree-like cluster merging 
structures, which may not reflect the dimensional evolution 
of real-life (biological) processes. 

In this paper, we present an original approach that enables 
tracing the evolution of biclusters as the clustering dimen-
sionality is varied. The method heavily relies on the stability 
of a positive tensor factorization-based metaclustering of 
NMF decompositions. We also show that the cluster corre-
spondence matrix  of the decomposition of the factoriza-
tions produced at various nc (w.r.t. a common reference fac-
torization) can play the role of a generalization of hierarchi-
cal clustering dendrograms.  

Finally, we applied our approach to a large colon adeno-
carcinoma dataset, which shows a complex, non-tree-like 
dimensional evolution of subclusters. Our method has al-
ready proven to be useful in the difficult task of determining 
the biologically relevant subclasses of colon adenocarci-
noma. 
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