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In the current post-genomic era, various aspects of gene function are being uncovered 
by a large number of experiments producing huge amounts of heterogeneous data at 
an accelerating pace. Putting all this data together, while taking into account existing 
knowledge has become a pressing need for developing environments able to explore 
and simulate biological entities at a system level.  

We argue for the need to create a common bioinformatic framework for modelling 
biological processes by a non-trivial integration of various complementary functional 
genomics data and knowledge with the goals of representing and simulating the rele-
vant biological networks and pathways, discovering targets for drugs and diagnostics, 
as well as determining the molecular mechanisms of diseases from gene expression 
data. Such a synergetic use of the available data will allow partly replacing certain 
costly, or even impractical biological experiments by “in silico” simulations of bio-
logical processes, as well as enable new in-depth and large-scale experiments. 

There are currently at least three types of extremely valuable resources, which are 
currently not used at their full potential: 
- gene expression data (e.g. from microarray experiments) 
- knowledge about networks and pathways (such as metabolic, genetic control, 

signalling pathways and protein interaction maps) 
- ontologies (such as the Gene Ontology). 

For example, gene expression data are extremely useful for understanding gene 
function at a global level, but they are typically used without taking the relevant net-
work and pathway knowledge into account. (This is due not only to the incomplete-
ness of pathway databases, but also their limited representation and interoperability.)  

Also, a lot of effort has been put into manual construction and annotation of path-
ways – this valuable knowledge should be used in as many contexts as possible. Un-
fortunately however, the modelling languages used by various annotation efforts are 
slightly different in terms of expressiveness, making the fusion of knowledge from 
such different pathway databases a difficult knowledge modelling problem.  

Modelling language, ontologies 

The main goals of system biology are related to modelling biological entities at a 
system (holistic) level for various purposes: analysis, simulation, prediction, etc (listed 
in increasing order of complexity). Thus, while analysis does not necessarily require 
complete models of the systems involved, simulation and especially prediction are not 
feasible without complete knowledge (at least at a certain level). For example, the 



structure of a genetic network involved in organism development may not be enough 
for simulation or prediction without detailed knowledge of  various reaction parame-
ters, which might be hard to obtain for all reactions. 

Thus, one of the most important requirements of this field is to allow an as detailed 
as possible representation of all relevant aspects of the biological processes to be 
modelled. Still, since most existing knowledge is either very detailed, but covering 
only a very few biological processes, or much less detailed, but having a wide cover-
age, we argue that  a very expressive modelling language will not do, since it will not 
be able to deal with the more sketchy (less detailed) knowledge that is available today. 
Still, the knowledge of the structure of the system will allow certain qualitative con-
clusions to be drawn, even in the absence of numerical parameters. Being able to 
exploit various heterogeneous resources for reasoning about biological systems at 
various levels of detail seems to be the major challenge in the field. 

The modelling language thus needs to be able to describe both qualitative (e.g. 
structural) and quantitative  aspects of a model at various levels of detail, in order to 
allow the integrated use of practically all existing biological knowledge, ranging from 
expert-curated pathway databases (such as KEGG [ 8], TRANSFAC/TRANSPATH 
[ 13], CSNDB) to high-throughput but less detailed experimental data such as protein-
interaction data, or even putative computationally-derived annotations. The language 
should allow a gradual transition from less detailed qualitative knowledge to very 
detailed quantitative knowledge about biological mechanisms and the use of such 
partial models during reasoning at all intermediate stages. 

Since the models should also be processable by computer programs (and not only 
by human biologists, as it is still the case today1), the modelling language will have to 
have a precisely defined formal semantics, that would allow the correct interoperation 
of the various software modules using them. 

Of course, all of these features require much more sophisticated reasoning tools. 
While for a uniform modelling language (even a very expressive one, based for exam-
ple on partial differential equations), reasoning is relatively easy using existing tools, 
reasoning in a heterogeneous modelling language allowing descriptions at various 
levels of detail is highly non-trivial and should rely on open architectures (open both 
from a technical and a conceptual point of view). Technically, the architecture should 
allow the integration of various software modules (e.g. PDE solvers, numerical pack-
ages, symbolic reasoning tools such as abductive reasoners, constraint satisfaction 
modules, process simulation and analysis tools, etc.). Conceptually, there should exist 
a unified model able to view the various types of knowledge in a uniform framework. 
A potential candidate for such an open modelling unified architecture could be a high-
level constraint reasoning environment such as a Constraint Logic Programming 
(CLP) system allowing the declarative implementation of constraint solvers using 
Constraint Handling Rules (CHR) [ 3]. 

Developing adequate representations for genes, proteins, networks, pathways, etc. 
is crucial for developing an integrated framework for molecular biology and genetics 
data. Current representations are rather fragmentary – a much tighter integration of the 

                                                           
1 Many pathway databases (e.g. KEGG) are currently more oriented towards a human user 

interface, rather than a computer processable one. 



various representations is required. Such representations have to refer a common vo-
cabulary of terms (in molecular biology / genetics), such as the Gene Ontology [ 4]. 

Since the resources in this field are distributed and currently accessible via Web-
based interfaces, it is important to make their content accessible in a “semantic Web” 
format (e.g. using newly proposed standards such as DAML+OIL [ 5]). Such enhanced 
representations allow not just expressive constructs with a formally defined semantics, 
but also automated reasoning about them (without such inference services, the repre-
sentations are useless w.r.t. automatic processing, which is essential in a field involv-
ing huge amounts of data and knowledge). 

We target the following aspects: 
• Modelling various types of biological networks and pathways (metabolic, ge-

netic control, signalling networks) in a unified framework that should also allow 
their simulation as well as automated reasoning. In our mind, it is important to de-
vise a representation formalism for biological pathways that is not only very expres-
sive, but also usable by sophisticated reasoning services (such as matching subnet-
works by complex logical descriptions of molecular disruptions of a target disease).  

• Devising ontologies more sophisticated than e.g. the Gene Ontology (which is just a 
hierarchy of molecular biology/genetics terms), possibly with domain-specific con-
structs, having a limited scope. An essential part still missing in all existing ontolo-
gies is the information about networks and pathways, which are essential for the new 
emerging field of Systems Biology. For example, a ‘molecular interaction’ might be 
not just a vocabulary term, but also a complex object (possibly similar to a transition 
in a Petri net) with associated components (in this case substrates/products)  as well 
as reasoning components (that can be invoked to reason about such interactions). 
The ever-growing amount of experimental data in molecular biology and genetics 

requires its automated analysis, by employing sophisticated knowledge discovery 
tools. In [ 1] we used an Inductive Logic Programming (ILP) learner to induce func-
tional discrimination rules between genes studied using microarrays and found to be 
differentially expressed in three recently discovered subtypes of adenocarcinoma of 
the lung. The discrimination rules involve functional annotations from the Proteome 
HumanPSD database in terms of the Gene Ontology (GO), whose hierarchical struc-
ture is essential for this task.  

It is encouraging that the discriminations obtained are biologically sensible – this 
heavily relies on the GO and the HumanPSD annotations. But this also automatically 
prompts the question of whether more sophisticated knowledge representation formal-
isms, such as Description Logics (DL) might allow even more precise functional dis-
tinctions to be made. 

A DL may allow an “on-the-fly” construction of concepts, rather than relying on a 
fixed hierarchy. Thus, we wouldn’t need to explicitly record in the ontology all gener-
alizations of existing concepts. For example, the current GO contains not just specific 
concepts like ‘cyclin-dependent protein kinase inhibitor’ or ‘transmembrane receptor 
protein tyrosine kinase activator’, but also their generalization ‘kinase regulator’. On 
the other hand, a DL may take advantage of the intrinsic composite nature of the con-
cepts above and represent them as ∃inhibits.CDK and ∃activates.TRPTK. Their gener-
alization need not be explicitly represented, since it can be computed by taking the 
least general generalization (“least common subsumer” in DL terminology) ∃regu-



lates.kinase of the two concepts above. Using a DL would also simplify the update 
and maintainance of the ontology by not having to explicitly specify all the inheritance 
relationships of a new concept, as well as by providing automated consistency check-
ing tools. Another useful extension of GO would involve integrating it with metabolic, 
regulatory and cell signalling pathway databases (which would allow more precise 
causal reasoning – for example, determining possible primary causes for complex 
genetic disruption profiles). 

Such more sophisticated representation formalisms for pathways and genes/proteins 
would allow mapping gene expression data onto the pathways (thereby generating 
pathway activations), which could be used in various abductive and inductive reason-
ing mechanisms involving: 
- disease recognition (by matching pathway activations to logical descriptions of the 

molecular mechanisms of diseases) 
- discovery of disease mechanisms by mining pathway activations. 

Knowledge discovery and machine learning 

A combined use of microarray gene expression data, pathways and functional anno-
tations (e.g. in terms of the Gene Ontology) in a common framework enables not just 
the interpretation of experiments in a detailed biological context, but also the discov-
ery of various types functional knowledge. Sophisticated machine learning algorithms 
able to deal with background knowledge (such as currently known pathways) are 
needed to achieve this. Already the most basic background knowledge on functional 
annotations, which involves hierarchies of concepts (as in GO, where the main type of 
relational information is in the form of inheritance relationships), is not directly treat-
able by propositional learners like C4.5, but could be dealt with our approach from 
[ 1]. We argue the need to go beyond attribute-value learners, i.e. towards relational 
learners [ 7], which are able to deal with structured representations and sophisticated 
background knowledge. Still most existing learners are either employing covering-
based methods (which are inappropriate in this context), or are learning a large num-
ber of association rules, without any simple means of selecting the most relevant ones. 
A precise measure of interestingness of induced rules w.r.t. a given background 
knowledge is needed. 

Pathway reconstruction 

A modelling language for system biology – even a very expressive one – is useless 
without the ability of aquiring knowledge about significant portions of the biological 
processes of interest. Knowledge aquisition is particularly difficult in biology not only 
due to the sheer number of entities involved, but also due to their heterogeneity. We 
have already advocated the need for reusing existing knowledge in whatever form it 
might currently exist. Sometimes, however, this is not enough and large-scale manual 
aquisition is not only very expensive, time-consuming, but also prone to errors. 

An alternative to manual knowledge aquisition in this domain could be the auto-
mated reconstruction of biological pathways. There are currently several types of 
knowledge relevant to the reconstruction (refinement) of biological networks and 
pathways: 



- partial knowledge about pathways (from pathway databases, textbooks, literature) 
- gene expression data (e.g. from microarrays experiments) 
- functional annotations (e.g. in terms of the Gene Ontology from the Proteome 

databases). 
There are also many approaches and algorithms for reconstructing pathways, but 

they have several important limitations: 
- they typically deal with just the raw expression data (without taking into account 

partial knowledge about pathways or functional annotations that are already avail-
able) 

- they typically require an impractically large number of knockout (or other genetic 
modification) experiments in order to be able to learn a complete network [ 9]. We 
would like to have a more incremental (i.e. an anytime) pathway reconstruction al-
gorithm that is able to refine partial pathways in an incremental fashion. 

Existing gene expression compendia (such as the Rosetta compendium for yeast 
[ 6]) contain data from a large number of microarray experiments (including knockout 
experiments) involving practically all yeast genes. We argue that the preliminary 
analysis attempts (involving most clustering of genes and expression profiles [eg.  6]) 
only scratch the surface of the knowledge hidden in such compendia. The most impor-
tant and challenging task involves extracting causal influence information from such 
data.  

While existing data mining and machine learning approaches (such as association 
rules learners) extract mainly shallow associations (correlations) present in data, we 
are aiming at discovering the true causal structure of the networks of interest. (Of 
course, for a limited amount of experimental data, only partial knowledge about the 
causal structure may be inferrable. We insist on the need to be able to express and 
refine such partial models.) The probabilistic nature of many biological processes (as 
well as the unavoidable noise present for example in microarray data) requires the use 
of probabilistic models, such as Bayes nets. Superficially, our problem resembles that 
of Bayes net structure learning – an already very difficult research problem. Unfortu-
nately, existing Bayes net structure learners cannot be directly employed in this do-
main, due to certain specificities of biological networks: 
1. Biological networks are cyclic, may have latent (hidden) variables (i.e. variables 

not present in the measured expression data) and may be prone to selection bias. 
(On the other hand, Bayes net structure learners deal only with acyclic networks2, 
and only few are able to deal with latent variables and selection bias). 

2. Since Bayes net structures are not Bayesian themselves (additional experimental 
data may change the most likely structure significantly), we need to infer only the 
features of the  network that are fully justified by the data (rather than a full Bayes 
net in which certain edges and/or edge orientations are not fully justified by the 
data, but rather represent the best scoring structure). The most popular structure 
learning algorithms (the scoring-based ones) are thus inapplicable in our setting, 
while none of the existing constraint-based algorithms (e.g. IC [ 10], PC, FCI [ 11]) 
covers all the requirements from (1) above. 

                                                           
2 The CCD algorithm of [ 12] is able to deal with cyclic structures, but not with latent variables. 

It is also limited to linear dependencies. 



3. Although the constraint-based algorithms are able to infer causal structures from 
purely observational data, upgrading them to deal with a combination of observa-
tional and experimental data is not straight-forward and hasn’t been solved yet. 
(The main problem seems to be related to the relatively small sub-populations of 
compendium samples for each perturbation, which doesn’t allow reliable inde-
pendence tests.) On the other hand, scoring-based methods are easily able to deal 
with this problem [ 2], but they are unapplicable due to the problems described at 
point (2) above.  

4. Taking into account existing background knowledge (in the form of partial net-
works) is also extremely important, especially due to the very large number of 
variables (genes) involved in such causal inference experiments.  

We are currently developing a constraint-based causal structure learner addressing 
all of the above problems. Since the first phase of the algorithm is very similar to 
clustering methods that are very popular in this domain, we may be able to compare 
the deeper models constructed by such a causal learner with the more shallow clusters 
reported in the literature. Our preliminary experiments currently show the computa-
tional feasability of our approach, as we are currently able to deal with networks of 
reasonably large size (e.g. 800 genes). 

In conclusion, we argue for a modelling environment for system biology that is not 
only very expressive, but also allows a non-trivial combination of various data and 
knowledge sources at various levels of detail and supports the automated reasoning 
about the various aspects of biological function. We also advocate the potential utility 
of causal structure learners for obtaining at least partial drafts of biological networks 
from expression data. 
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