

Abstract. Determining the direction of causal influence from
observational data only is essential in many applications, such as
the reconstruction of genetic networks from microarray data. As
opposed to many probabilistic network inference algorithms which
were designed to induce just statistical models of the data,
Conditional Independence (CI) based algorithms are theoretically
able to infer true causal models from observational data only. But
unfortunately, the small sample sizes available from current
microarray experiments render the determination of causal direction
highly inaccurate. Here we show that this essential aspect of CI-
based algorithms can be significantly improved by double-checking
certain key statistical tests and by reconciling potential
inconsistencies using a simple constraint propagation scheme.

1 INTRODUCTION AND MOTIVATION
The problem of inferring the structure of very large probabilistic
networks has recently received a significant boost due to
bioinformatics applications, especially those dealing with the
reconstruction of genetic networks from microarray data. While
temporal gene expression data (produced for example in the study
of developmental processes) contains enough causal information in
the temporal data sequence to allow the reconstruction of the causal
networks with a reasonable accuracy, microarray data from steady
states of the cell (for example, associated to various disease states)
has proved, as far as we know, intractable for current structure
inference algorithms. The main difficulties are related to the very
large numbers of variables (i.e. genes – of the order of hundreds to
thousands), the presence of many hidden (latent) variables, the
small sample sizes available (tens to a few hundreds), as well as to
the tough requirement of reconstructing the true causal structure
rather than just a statistically equivalent one.

As the small sample sizes available are not enough to completely
determine the network, more sophisticated approaches using e.g.
Bayesian model averaging [2] have been proposed to deal with
network structure in a Bayesian manner, especially when there
might be many models (usually exponentially many) with a non-
negligible posterior. However, model averaging cannot deal with
the large number of variables in microarray data.

On the other hand, state of the art scoring-based algorithms
(either based on simple model selection or on model averaging)
were designed to induce statistical models of the data, rather than
true causal models. Thus, the edges induced by such algorithms and
especially their orientations do not necessarily reflect (the direction

1 AI group, National Institute for Research and Development in Informatics,
8-10 Averescu Blvd. Bucharest, Romania. E-mail: badea@ici.ro. The
author is grateful to ECCAI for receiving an ECAI-2004 travel award.

of) causal influence, as several distinct causal models, which differ
in edge orientation, can be statistically equivalent [4].

Conditional-independence (CI) based algorithms [4,6] infer
entire equivalence classes of graph models, thereby enabling a
causal interpretation of the resulting edge orientations. (Edges
with the same orientation in all statistically equivalent models
represent true causal influences since the true causal model must be
among the statistically equivalent models.) Even with small sample
sizes and large numbers of variables (e.g. 73 samples and 1000
variables), we have been able to use such CI-based algorithms for
recovering at least the most influential parts of given probabilistic
networks. However, existing CI algorithms tend to be highly
inaccurate in orienting edges (i.e. in determining the direction of
causal influence) [6], especially in the case of few samples. In this
paper we show that edge orientation can be significantly improved
by double-checking certain key statistical tests and by reconciling
potential inconsistencies using a simple constraint propagation
scheme.

2 AN IMPROVED CONSTRAINT-BASED
ALGORITHM
Conditional-independence based algorithms like IC* of Pearl and
Verma [4] or the more efficient Fast Causal Inference (FCI)
algorithm of Spirtes et al. [6] start with a completely connected
network and simply use conditional independence (CI) tests to find
separators for edges representing indirect influences. Finally, edge
endpoints are oriented based on the separators found.

Although IC* and FCI are very close to the requirements of our
bioinformatics application domain, they still have certain important
drawbacks: as they construct causal structures by categorical
inference based on the results of conditional independence tests,
they are sensitive to the high amount of noise in the microarray data
as well as to the small sample sizes.

In the following we show how CI-based methods (and especially
their edge orientation phase) can be made more robust when
dealing with small and noisy samples. Since the small sample size
may support several potentially conflicting models, we provide
means for coping with such inconsistencies by strengthening the
collider and non-collider tests of FCI while preserving their
efficiency, and by eliminating the remaining inconsistencies
(anomalies) as well as all the features inferred from these.

We refer to [4] for the basic notions on Bayesian networks. The
output of our QFCI algorithm described below will be a Partial
Ancestral Graph (PAG), which is a concise representation of an
entire equivalence class of graph models. Unlike standard PAGs,
ours have confidence factors attached to the undirected edges, as
well as to directed edge endpoints.

Determining the direction of causal influence in large
probabilistic networks: a constraint-based approach

Liviu Badea 1

 In the following, we use the notations of [6] for describing
PAGs. Briefly, edges can have three kinds of endpoints in a PAG:
‘−’, ‘>’ and ‘ο’. We also use the additional meta-symbol ‘∗’ that
stands for any of the three kinds of endpoints. An ‘−’ endpoint at Y
for an edge X ∗−− Y denotes the fact that Y is an ancestor of X in
every graph of the equivalence class represented by the PAG, while
an ‘>’ endpoint at Y for X ∗−> Y means that Y is not an ancestor of
X. Finally, an ‘ο’ endpoint places no restriction on the ancestor
relationships. (See [6] for more details.)

A collider is a structure of the form X ∗−> Y <−∗ Z. A collider is
called unshielded iff X and Z are not adjacent in the PAG.

In the following, we present a constraint-based causal inference
algorithm, QFCI, which aims at improving the robustness of the
FCI algorithm in the face of noise and small sample sizes.

Employing a two-valued logic for combining the results of
conditional independence tests in noisy domains may lead to
inconsistencies, or anomalies. In fact, we have observed the
occurrence of anomalies not only in microarray datasets (such as
the Garber lung carcinoma study [3], the Rosetta Compendium of
yeast microarray experiments and the Spellman yeast cell cycle
data), but also in synthetic data. The most important type of
anomaly observed was a so-called “collider anomaly”, which is due
to the inconsistencies between different colliders at a given node Y.

Recall that FCI recognizes colliders as follows: for non-adjacent
X and Z, X∗−∗Y∗−∗Z is a collider iff Y∉Sep(X,Z), where Sep(X,Z)
is the first separating set found for X and Z: X ⊥ Z | Sep(X,Z).

Definition (collider anomaly) Two unshielded colliders detected
by the FCI algorithm

X1 ∗−> Y <−∗ X2 (for which Y∉Sep(X1,X2)) and
Z1 ∗−> Y <−∗ Z2 (for which Y∉Sep(Z1,Z2))

are inconsistent w.r.t. the current set of separators Sep (or short,
Sep-inconsistent) iff ∃i,j∈{1,2} such that Xi and Zj are not adjacent
and Xi ∗−> Y <−∗ Zj is not a collider w.r.t. Sep, i.e. Y∈Sep(Xi,Zj).

As can be seen in the following Figure, a collider anomaly
appears whenever a pair of arrowheads from different colliders
(such as X1 ∗−> Y <−∗ Z1) doesn’t form a collider according to Sep.

Example. An example of a collider
anomaly (in a dataset of size 1000
sampled from a synthetic network
with 40 variables and 35 edges)
involves the colliders
X7∗−>X32<−∗X22 (X32 ∉
Sep(X7,X22)=∅) and
X7∗−>X32<−∗X36 (X32 ∉ Sep(X7,X36)={X39}) for which
X22 ∗−> X32 <−∗ X36 is not a collider w.r.t. Sep (since X32 ∈
Sep(X22,X36) ={X32}).

Figure 2. (a) The true graph (b) The collider anomaly

In other words, we have to place an arrow X22 ∗−> X32 (because
X7 ∗−> X32 <−∗ X22 is a collider w.r.t. Sep) and an arrow X36 ∗−>

X32 (since X7 ∗−> X32 <−∗ X36 is also a collider w.r.t. Sep), but
these two arrows are inconsistent since X32 ∈ Sep(X22,X36).

As can be seen by looking at the true graph in Figure 2(a), the
inconsistency was due in this case to wrongly recognizing
X7 ∗−> X32 <−∗ X36 as a collider based on Sep(X7,X36)={X39}
which does not contain X32. The fact that Sep records only a single
separator set (among potentially many others) makes the collider
recognition rule of FCI sensitive to errors in the independence test.
In this specific case, the error in Sep(X7,X36) was due to a type-II
error in the test X7 ⊥ X36 | X39, which succeeded (p-value=0.728 >
α=0.05, for N=1000) despite the fact that X39 does not d-separate
X7 from X36.

Since in the presence of many variables it would be very
inefficient to recompute all the separators of X7 and X36, we
strengthen the FCI collider test by double checking whether adding
X32 to the current separator Sep(X7,X36) makes X7 and X36
dependent: X7 ⊥/ X36 | X39,X32. (If X32 were a true collider,
conditioning on it would d-connect X7 and X36.) If however, X7
and X36 remain independent, we cannot safely declare X32 a
collider.

Definition (strong collider test) For X ∗−∗ Y ∗−∗ Z, Y passes the
strong collider test iff Y∉Sep(X,Z) and X ⊥/ Z | Sep(X,Z) ∪ {Y},
while Y passes the strong non-collider test iff Y∈Sep(X,Z) and
X ⊥/ Z | Sep(X,Z) \ {Y}.

The strong non-collider test is dual to the strong collider test: we
double check whether removing Y from the separator Sep(X,Z)
makes X and Z dependent (as it should if Y were not a collider). If it
doesn’t, we refrain from declaring Y a non-collider.

Collider anomalies that are removed by the stronger definition of
(non)collider are called reducible. The others are called irreducible.

Definition (irreducible collider anomaly) An irreducible collider
anomaly is a pair of strong colliders X1 ∗−> Y <−∗ X2 and
Z1 ∗−> Y <−∗ Z2 such that Xi ∗−> Y <−∗ Zj is a strong non-
collider for some i,j∈{1,2}.

Our constraint-based algorithm QFCI works as follows.

QFCI
1. Initialize the undirected graph by computing
unconditional independencies
start with an empty PAG
for all pairs of variables X,Y

perform the unconditional independence test X ⊥ Y and set
pu(X,Y) to its p-value1 and p(X,Y) = pu(X,Y)2
if pu(X,Y) < α (the test failed w.r.t. the significance level α)

add an undirected edge X ο−ο Y to the PAG
else (pu(X,Y) ≥ α, i.e. the test succeeded)

set Sep(X,Y) = ∅
2. Refine the undirected graph by conditional independence
tests
for k = 1..kmax (consider conditioning sets of increasing size)

1 pu(X,Y) will be used later to quantify the degree of unconditional
correlation of X with Y.
2 p(X,Y) will be the largest p-value of a conditional independence test
performed so far on X and Y: p(X,Y) = maxS p_value(X ⊥ Y | S). We use
p(X,Y) to quantify our confidence in the undirected edge X∗−∗Y.

X1

Y

X2

Z1 Z2

?

X7

X32

X36

?

X22X7

X32

X36 X39

X22

for all undirected edges X ο−ο Y (in decreasing order of their
labels pu(X,Y), i.e. increasing order of the associated
unconditional correlations)

let N = neighbors(X) ∪ neighbors(Y) 3
if |N| ≥ k

for all subsets S ⊆ N of size k (constructed by adding k
nodes Z∈N to S in increasing order of their minimal p-
labels4 min{pu(Z,X), pu(Z,Y)})

perform the conditional independence test X ⊥ Y | S
and let p be its p-value
if p ≥ α (the test succeeded, i.e. S is a separator)

delete the undirected edge X ο−ο Y
set Sep(X,Y) = S and p(X,Y) = p
break

else if p > p(X,Y) then set p(X,Y) = p
(i.e. set p(X,Y) to the maximal p-value of the
X ⊥ Y | S tests performed so far)

3. Search for potential colliders and non-colliders
for all variables Y

for all pairs X,Z of non-adjacent neighbors of Y
if X ∗−∗ Y ∗−∗ Z passes the strong collider test

add the positive assertion X ∗−> Y ∧ Z ∗−> Y : cf
with confidence factor
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where
pd = p_value(X ⊥ Z | Sep(X,Z) ∪ {Y}) < α is the p-value
of the failed independence test performed during the
strong collider test5

else if X∗−∗Y∗−∗Z passes the strong non-collider test
add the negative assertion ¬ (X ∗−> Y ∧ Z ∗−> Y) : cf
with confidence factor
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where
pd = p_value(X ⊥ Z | Sep(X,Z) \ {Y}) < α is the p-value
of the failed independence test performed during the
strong non-collider test

4. Eliminate collider anomalies
for all pairs of positive assertions

X1 ∗−> Y ∧ X2 ∗−> Y : cf1 and Z1 ∗−> Y ∧ Z2 ∗−> Y : cf2
if there exists a negative assertion

¬(Xi ∗−> Y ∧ Zj ∗−> Y) : cf for some i,j∈{1,2}
remove these positive and negative assertions

5. Constraint propagation of assertions
repeat

propagate assertions (using the propagation rules below)
until no more propagations are possible
remove potential inconsistencies

The worst-case complexity of the algorithm is exponential in the
number of variables n, because in principle it has to consider all
subsets of variables as conditioning sets (there are 2n-2⋅ n(n-1)/2
such subsets). Fortunately however, genetic networks typically have
small in- and out-degrees, so that searching for separating subsets S
in increasing order of their size S will avoid many unnecessary

3 For simplicity, we do not reproduce here the more complex determination
of a complete set of candidate separators used in FCI (based on Possible-D-
Sep), which might not be reliable for small sample sizes.
4 i.e. in decreasing order of their maximal unconditional correlations
 max{|ru(Z,X)|, |ru(Z,Y)|}.
5 Note that p(X,Z) = p_value(X ⊥ Z | Sep(X,Z)) ≥ α and
 p(X,Y) = maxS p_value(X ⊥ Y | S) < α. (Similarly, p(Y,Z) < α.)

(and unreliable) CI tests. Thus, in practice the run-time is
dominated by the independence tests conditional on size 1 subsets.

A further heuristic, but very effective improvement restricts the
search for separator subsets S among the direct neighbors of the
nodes to be separated. Thus, since we initially start with a
completely connected graph, it is essential to reduce the number of
direct neighbors of nodes as quickly as possible. This is achieved by
our ordering heuristic which tries to separate the pairs of variables
(X,Y) in increasing order of their unconditional correlation |ru(X,Y)|.
This heuristic assumes that (unconditionally) less correlated
variables will be easier to separate conditionally. Scheduling
independence tests that are more likely to succeed earlier reduces
node neighborhoods as quickly as possible, thereby reducing the
number of candidate neighbors in the later phases.

Quantitative information is also used in phase 2 when exploring
potential separator sets S for a pair of nodes (X,Y). Variables Z with
a higher (unconditional) correlation with one of X or Y are more
likely to be true neighbors (as opposed to just temporary neighbors
at this stage of the algorithm6) and are selected with priority as
members of S.

The search for colliders in phase 3 employs the strong collider
and non-collider tests. But since even these stricter tests may not
eliminate all collider anomalies, we need to explicitly remove the
colliders involved in such anomalies.

To allow a more precise evaluation of the results, the discovery
of potential colliders and non-colliders produces assertions labeled
by confidence factors (based on quantitative information from the
independence tests).

Definition (assertions) Assertions can be either positive
X ∗−> Y ∧ Z ∗−> Y : cf (p2)
X ∗−> Y : cf (p1)

or negative
¬ (X ∗−> Y ∧ Z ∗−> Y) : cf (n2)
¬ X ∗−> Y : cf (n1)
Assertions of the form (p2), (p1), or (n1) are called definite,

while those of the form (n2) are called disjunctive (since they are
equivalent to ¬ X ∗−> Y ∨ ¬ Z ∗−> Y : cf).

A positive assertion of the form (p2) means that we are confident
with degree cf that both arrowheads at Y (X ∗−> Y and Z ∗−> Y)
should appear in the partial graph. A negative assertion of the form
(n2) means that the arrowheads X ∗−> Y and Z ∗−> Y cannot both
appear in the partial graph.

Collider anomalies are inconsistencies in the assertions. Under
the usual assumptions (such as faithfulness and the representability
of the observed JPD by a single graph model), the most likely
explanation for such inconsistencies is the small sample size, which
cannot exclude several potentially conflicting models.

While some anomalies disappear when using our stronger
(non)collider test, the remaining irreducible ones need to be
eliminated by removing the conflicting assertions (phase 4).

The remaining assertions, which are now guaranteed to be
consistent, are subsequently propagated in phase 5.

Propagation (for example of Z ∗−> Y with ¬(X ∗−>Y ∧ Z ∗−> Y))
can produce definite (unary) negative assertions of the form
¬ X ∗−> Y, which can be automatically converted to X ∗−− Y (recall
that an ‘>’ arrowhead into Y means that Y is not an ancestor of X,

6 Recall that initially, nodes may be connected to many more other nodes
than their direct neighbors.

while an ‘−’ endpoint says that Y is an ancestor of X). But in the
absence of hidden selection variables, we cannot have edges with
‘−’ endpoints at both ends, so X ∗−− Y could be immediately
turned into X <−− Y. Unfortunately, placing new ‘<’ arrowheads
may lead to new inconsistencies, 7 for example involving U ∗−> X
<−− Y and the negative assertion (non-collider) ¬(U ∗−> X <−∗ Y).
To make things even more complicated, the arrow X <−− Y may
propagate another arrow, for example V <<<<−−−−−−−− X <−− Y before the
discovery of the inconsistency with U ∗−> X.

Using the terminology of non-monotonic logics, we adopt a
“skeptical” attitude towards inferring new edge orientations, which
amounts to withholding from propagating an arrowhead that may be
involved in a conflict with another one. As all assertions involved
in such potential inconsistencies must be eliminated, we have to
keep track of the inferences (propagations) made from these
assertions, in order to enable their subsequent removal. In our
previous example, removing the arrowhead at X in X <−− Y will
have to invalidate the V <−− X arrow as well (of course, only if
V <−− X has no other “justification”).

More generally, we attach a “justification” to each assertion,
representing the successive insertions of arrowheads (for avoiding
X −−− Y edges) that have lead to placing the current arrowhead.

Definition (justification of an assertion) The justification of a
primitive assertion (i.e. an assertion generated in phase 3 and based
on CI tests) is empty. The justification of a derived assertion (i.e. an
assertion propagated in phase 5) is a set of atomic labels j = {l1, l2,
..., ln} representing arrowheads placed for avoiding X −−− Y edges.

We use the notation A : cf :: j for an assertion A with
justification j (empty justifications can be omitted).

An ATMS could be used to manage assertions and their
justifications. But the propagation rules in our domain are very
simple due to the very constrained form of assertions (in the
following, a and b stand for edge arrowheads of the form X ∗−> Y):

a ∧ b : cf ⇒ a : cf, b : cf
a : cfa :: ja, ¬(a ∧ b) : cf ⇒ ¬b : cfa⋅cf :: ja

¬(X ∗−> Y) : cf :: j ⇒ Y −−> X : cf :: j ∪ {li}
 (with li a new atomic label)

An arrowhead inconsistency is treated by the rule:
a :: j1, ¬a :: j2 ⇒ remove_inconsistency(j1, j2)

which deletes all assertions A :: j with justifications containing j1 or
j2: j ⊇ j1 (but only if j1 ≠ ∅) or j ⊇ j2 (but only if j2 ≠ ∅).

Finally, after all potential inconsistencies have been removed, we
aggregate the confidence factors for edge endpoints as follows
(since a given edge endpoint can be supported by several assertions
with different confidence factors): cf(a) = max{ cfi | a : cfi }.
(Assertions with confidence factors below a given threshold, e.g.
α=0.05, are automatically discarded.)

Note that the rule that orients edges for avoiding the formation of
new colliders (rule R1 in [4], or rule G(ii) in [6]):

X ∗−> Y ∗−∗ Z ⇒ X ∗−> Y −−> Z
is a special case of our propagation of assertions (phase 5).

Also note that we do not apply the acyclicity rule (R2 from [4],
or G(i) from [6]), since genetic networks are potentially cyclic.
However, dealing with both cycles and latent variables is an open
research problem, so we do not aim at completeness in the presence
of cycles [5].

7 of course, only in the case of unreliable CI tests.

3 EVALUATION
We evaluated QFCI on synthetic datasets similar to the extreme
conditions encountered in real-life microarray datasets, such as the
Garber lung cancer data [3]. The main problem is related to the low
power of conditional independence tests for such small sample sizes
(N=73), for which it is generally impossible to discriminate between
true but weak dependencies and nonzero fluctuations of correlations
of otherwise independent variables. Thus, although we cannot
expect to obtain a perfect model of the data, we would still like to
recover at least the stronger dependencies in the data, while
minimizing the number of wrong edges.

In the following we compare QFCI with the original FCI
algorithm from the TETRAD IV distribution [8] and WinMine [9]
on datasets of size 73 (the same as in [3]) sampled from synthetic
linear models generated from Erdos-Renyi random graphs with 850
nodes and 2000 edges (corresponding to a biologically plausible
average degree of 4.7).

Since expression levels in microarray measurements are
continuous variables, we have chosen to employ CI tests based on
the Fisher z transform of partial correlations. Strictly speaking,
these tests are only correct if the variables are jointly normal, but
they are still often useful for non-normal distributions as well. The
alternative of discretizing the variables seems worse, especially in
view of the small sample sizes, as it would further reduce the power
of the tests. (The majority of scoring-based implementations use
discretization of the continuous variables.)

The following Table presents the results of FCI, QFCI and
WinMine using their default parameters (FCI and QFCI have a
single parameter, α=0.05),8 except for WinMine, which was run in
the ‘acyclic’ mode. The Table contains the averages and standard
deviations of the following edge counts corresponding to 5 runs of
the algorithms on 5 different Erdos-Renyi random graphs with 850
nodes (variables) and approximately 2000 edges:

MEAN (STD)
5 networks FCI (Tetrad) QFCI & Tetrad QFCI QFCI &

WinMine WinMine

Original edges (c+m) 1995.6 (3.3) 1995.6 (3.3) 1995.6 (3.3)

Total induced edges (e) 828.4 (13.7) 824.2 (16.8) 624.6 (23.9)

Correct skeleton (c) 707 (25.6) 685.4 (27.2) 710.2 (30.6) 422.2 (16.6) 473.4 (11.6)

c/e 85.4% (1.9) 86.2% (1.8) 75.8% (0.5)

Compatible orientation (o) 423.8 (28.2) 405 (29.5) 663.6 (20.6) 221.8 (6.5) 267.4 (14.3)

o/c 59.9% (1.1) 93.4% (0.7) 56.5% (1.2)

--> 115.4 (17.4) 57.6 (9.1) 267.4 (14.3)

o-> 134 (12.6) 242 (21.8)

o-o 174.4 (14.9) 364 (13.4)

incompabible orientation (i) 283.2 (29.5) 35.2 (13.3) 46.6 (15.1) 9.6 (4.3) 206 (15.6)

i/c 40.1% (1.2) 6.6% (0.5) 43.5% (1.3)

--> 35.8 (10.3) 6.4 (4.8) 206 (15.6)

o-> 60.6 (6.0) 21 (8.2)

<-> 181.6 (21.1) 19.2 (5.0)

--- 5.2 (1.5)

Wrong skeleton (w) 120.8 (19.3) 87.6 (17.3) 114 (19.5) 10 (4.1) 151.2 (26.5)

w/e 14.6% (1.4) 13.8% (1.2) 24.2% (1.1)

Missing edges (m) 1288.6 (25.1) 1285.4 (30) 1522.2 (13.5)

m/(c+m) 64.6% (0.5) 64.4% (0.5) 76.3% (0.5)

- e: the total number of induced edges

8 We have performed experiments on many more random graphs with
various parameter settings and obtained similar results for all of these.

- c: the number of edges which are correct if we disregard their
orientation (“correct skeleton”)

- w: the number of wrong edges induced by the algorithms
(induced edges which do not occur in the original model)

- m: the number of edges from the original model that are missing
from the induced graph

- o: edges having an orientation compatible with the original edge
(for example, o−> is compatible with −−>, but not with <−−)

- i: the number of edges which appear in the original graph, but
only with an incompatible orientation.
The columns marked “QFCI & Tetrad” (“QFCI & WinMine”)

contain the overlaps between QFCI and Tetrad (respectively
between QFCI and WinMine) in the corresponding categories.

Given the very small sample size, the large number of missing
edges is not surprising.9 Nor is the fact that FCI and QFCI induce
more or less the same “skeleton” (i.e. undirected graph10). However,
even with respect to the skeleton, QFCI and the original FCI
perform significantly better than WinMine (the proportion of wrong
edges induced by WinMine is already larger than that of QFCI and
FCI, while the number of correct edges is much lower 473 < 710).

The large number of missing edges is not a fatal drawback in our
bioinformatics application, in which almost nothing is known about
the circuitry of the genes involved. The discovery of even only the
strongest dependencies is thus still a significant step forward.

The most important improvement of QFCI w.r.t. the other
algorithms is obtained in the orientation of edges. Indeed, while
only 59.9% of the correct FCI edges had also correct (or at least
compatible) orientations, 93.4% of the edges induced by QFCI had
a compatible orientation. WinMine orients edges almost at random.

The above Table also presents a more detailed breakdown of the
correctly and wrongly oriented edges. Not very surprisingly, about
half of the compatible edges remain completely unoriented (o−o).
Our results confirm the observation of Spirtes et al. [6] that FCI’s
error rate is significantly higher w.r.t. edge orientations than
regarding the skeleton (of course, FCI was not designed to cope
with such small sample sizes). Thus, overall, QFCI seems to fare
better than existing algorithms, especially w.r.t. edge orientation.

Note that the precise nature of our biological problem seems to
favour a constraint-based approach over a scoring-based algorithm
based on model selection. Indeed, a scoring-based method will keep
adding edges until no further improvement of the score can be
achieved. But this does not mean that the given data necessarily
implies all the edges induced, nor that their orientations reflect the
true causal directions of influence. On the other hand, a constraint-
based algorithm like QFCI will return only edges that have a high
probability of occurring in all alternative models of the given data.
Such an approach may miss many weak dependencies (which
cannot be discriminated from noise with such small sample sizes),
but the edges returned tend to be correct. Furthermore, directed
edges can be interpreted as causal influences.

4 RELATED WORK AND CONCLUSIONS
The approach in [7] also deals with improving the edge orientation
phase of CI-based algorithms. The main difference w.r.t. our
approach is that [7] uses a context-dependent relative scoring

9 A more in-depth analysis revealed that these tend to be edges x�y
corresponding to parents x with small influence on y in the given dataset.
10 Refining the skeleton inference is not the main concern of this paper.

function for determining colliders (i.e. one that scores a collider
based on the orientations of all the other edges in the graph), which
only works well with a reasonably complete model and in the
absence of latent variables. (This is why the algorithm in [7]
reorients all edges anew after each single edge addition – this
wouldn’t have been necessary if edge orientations would not be
very sensitive to the incompleteness of the intermediate models.)
On the other hand, while [7] attempts to obtain complete statistical
models, we are aiming at determining the directions of influences
that are fully determined by the data (and thus admit a causal
interpretation) independently of the other orientations (to avoid the
propagation of errors) in highly incomplete models with potentially
many latent variables. (Incompleteness is due to the few and noisy
samples and to the much stronger requirement of identifying the
original edges and their orientations rather than just a statistically
equivalent model of the data. This is – in non-monotonic logic
terminology – a “skeptical” approach to recognizing features of the
model, which requires, among others, context-independent collider
recognition.)
 The BNPowerConstructor [1] also employs quantitative
information related to the independence tests in a constraint-based
algorithm. However, extending it to deal with latent variables or
small samples seems extremely difficult, if not inherently
impossible.
 We have also applied QFCI on the Garber lung cancer dataset
[3] and obtained very encouraging results from a biological
viewpoint. The Supplemental Figure online at
http://www.ai.ici.ro/ecai04/SupplFig.pdf depicts the neighbours (up
to depth 5) of the discrete variable associated to the ‘small cell’
lung cancer subtype. It is particularly striking that QFCI finds
‘small cell’ connected to a single gene of unknown function,
INSM1 (insulinoma-associated 1), which is known to serve as a
marker for lung tumours of neuroendocrine differentiation.
Moreover, all of the genes hand-picked by human experts in Garber
et al. [3] in their discussion of the ‘small cell’ subtype are very
close neighbors in our network: 7B2 (SGNE1), glutaminyl cyclase
(QPCT), L-myc (Hs.92137) and the neuronal differentiation marker
achaete-scute homolog (IMAGE:1416420), while several others
appearing in our network have unknown functions and should be
further investigated. The network obtained could represent a good
starting point for elucidating the details of the genetic networks
involved in lung carcinoma by enabling much better targeted
experiments.

REFERENCES
1. Cheng J, Bell D, Liu W. Learning Bayesian networks from data: an

efficient approach based on information theory. Proc. CIKM-97, 325.
2. Madigan D, York J. Bayesian graphical models for discrete data.

Internat. Statist. Rev 63, 215-232, 1995.
3. Garber M.E. et al. Diversity of gene expression in adenocarcinoma of

the lung. PNAS 98, 13784-9, Nov 20, 2001.
4. Pearl J. Causality: Models, Reasoning, and Inference, CUP 2000.
5. Richardson T, Spirtes P. Automated discovery of linear feedback

models, Technical Report CMU-75-Phil.
6. Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search,

MIT Press, 2001.
7. Steck H. On the use of skeletons when learning in bayesian networks.

Proc. UAI-2000, 558-65.
8. TETRAD IV. http://www.phil.cmu.edu/projects/tetrad/tetrad4.html
9. WinMine. http://research.microsoft.com/~dmax/winmine/tooldoc.htm

