
Ex Claim� a hybrid language for knowledge
representation and reasoning using description

logics

Liviu Badea
AI Research Department

Research Institute for Informatics
���� Averescu Blvd�� Bucharest� Romania

e�mail� badea�roearn�ici�ro

Abstract�

This paper presents Ex Claim� a hybrid language for knowl�
edge representation and reasoning� Originally developed as an
operationalization language for the KADS knowledge based
systems development methodology� Ex Claim has a meta�level
architecture� it structures the knowledge on three levels� namely
the domain� inference and task level� An extension of a de�
scription logic is used for implementing the domain level� The
inference and task levels are procedural and support non�
determinism �inferences and tasks being backtrackable�� This
in turn requires a non�monotonic domain level�

Description logics o�er a set of inference services �not avail�
able in other KR languages� which are extremely useful in
knowledge modelling� Such inference services include domain�
level deduction� semantic consistency veri	cation and auto�
matic classi	cation of concepts� Note that most of the exist�
ing KBS development tools and environments do not provide
any facilities for model consistency or completeness checking�
We argue that such validation and veri	cation facilities are
extremely important in assisting a knowledge engineer in de�
veloping models� In fact� these might be the main facilities a
user would expect from a computer�aided KBS development
tool�

The 	nal goal of this research is to use Ex Claim for develop�
ing real�world applications and to demonstrate the usefulness
of the knowledge level simulation
execution facilities o�ered
by ExClaim in KBS development�

� Introduction

This introductory section describes the present state in knowl�
edge based systems development tools and then gives a brief
description of our approach�

Knowledge based systems �KBS� are typically large and
complex software systems aiming at solving di�cult prob�
lems in knowledge�intensive domains� Knowledge engineer�

ing in general and KBS development in particular are no�
toriously di�cult not only because of the sheer size of the
problem description� but also because they typically involve
complex ontologies� which are usually not easily representable
in a single knowledge representation formalism� The lack of

well�established algorithms in such complex domains leads
to computational problems due mainly to the large search
spaces involved� The process of knowledge acquisition is also
more di�cult than in other cases� but viewing it as a process
of knowledge modelling rather than a process of knowledge
transfer �from the expert to the machine� helps to alleviate
some of these problems�

In order to assist the knowledge engineer in developing
KBSs� a large number of KBS development tools have been
built since the eighties� Two main tendencies were followed in
the early years�

On one hand� a great number of expert system �shells

were put forward� Systems like KEE� ART� Knowledge Craft�
Nexpert Object etc� were successfully used in building a large
number of expert systems� These �shells
� however� had an
important drawback� they used a given symbol�level repre�
sentation �for instance a frame�based system augmented with
rules� daemons� message passing� etc��� which is usually not
appropriate for describing reusable knowledge�level models�

An alternative approach to building KBS development tools
was inspired by the traditional software engineering �SE� tools�
SE tools are nevertheless inappropriate as KBS tools since
the domain knowledge �the ontology� is much more complex
in the case of a KBS than in the case of a typical software
system�

The remarks above suggest the need for a knowledge�level
KBS development tool that would provide at least some of
the nice simulation facilities o�ered by traditional SE tools�
Such facilities are much harder to develop in the case of
KBSs� since� as already mentioned above� we are dealing with
much more complex domain knowledge� An extreme approach
would be to use full predicate logic as a domain description
language and to support the reasoning involved with a full
	rst order logic theorem prover� This approach �followed in
the FML component ��� of the CommonKADS Workbench�
can be very ine�cient in complex cases� Also� the readability
of model speci	cations may sometimes be quite low� especially
when dealing with complex logic formulae�

In order to support knowledge�level knowledge modelling�
a series of methodologies and speci	cation languages have
been put forward� the most important ones being the KADS

methodology ���� in Europe� KIF and Ontolingua in the US�
In order to support the KADS methodology with executable

tools� a number of KADS operationalization languages and
environments have been developed� Si�ML��
FML� OMOS�
MoMo� KARL� MODEL�K� FORKADS ��� etc� Most of these
languages are either very expressive� formally sound but com�
putationally ine�cient �sometimes even intractable�� or they
have a more procedural semantics� being less expressive� but
more tractable�

This paper proposes using a class of knowledge represen�
tation languages� namely the description logics� for both for�
malising and executing CommonKADS expertise models� The
following advantages of this approach can be mentioned�

First� description logics represent the formalism closest to
the KADS domain level� In fact� the design of the KADS
domain level was obviously inspired by the KL�ONE like lan�
guages ����

Second� description logics o�er a set of inference services
�not available in other KR languages� which are extremely
useful in knowledge modelling� Such inference services include
domain�level deduction� semantic consistency veri	cation and
automatic classi	cation of concepts� Note that most of the ex�
isting KBS development tools and environments do not pro�
vide any help for model consistency
completeness checking�
The issue of verifying �KADS� models has not been exten�
sively addressed� mainly due to the computational di�culties
involved� However� such validation and veri	cation facilities
are extremely important in assisting a knowledge engineer in
building models� In fact� these might be among the very �rst

facilities a user would expect from a computer�aided KBS de�
velopment tool�

The Ex Claim knowledge modelling environment� presented
in this paper� is particularly interesting since it preserves its
runtime e�ciency in spite of the fact that it uses a formal
knowledge representation language� at the domain level� It
may therefore be regarded as a reasonable trade�o� between
expressiveness� readability and e�ciency�

��� Brief description of Ex Claim

Ex Claim �Executable CommonKADS Language for Integrated
Modelling� is a knowledge modelling environment �based on
the CommonKADS methodology ����� that adds operational�
ization features to the CommonKADS Workbench developed
in the KADS�II project� ExClaim is a logic�based language
�with a meta�level architecture and supporting non�determinism�
for describing and executing KADS models� The process of
knowledge engineering is thus improved by the model simu�
lation
execution facilities o�ered by the system�

The domain knowledge is extended with a description �ter�
minological� logic which provides fairly sophisticated infer�
ence services �such as domain�level deduction� semantic con�
sistency checking� automatic classi	cation of concepts� knowl�
edge structuring and indexing��

The system has the meta�level architecture speci	c to KADS�
the knowledge is structured on three levels� namely the do�
main� inference and task knowledge� Since the inference level
refers the domain only indirectly via inference roles� the mod�
els are highly reusable�

� a description logic� which� although less expressive than full �rst
order logic� is more e�cient

ExClaim supports non�deterministic reasoning� its domain
operations� inferences and tasks being backtrackable� Note
that� as opposed to traditional software engineering tools�
non�determinism is very useful in KBSs�

ExClaim is fully integrated in the CommonKADS Work�
bench and takes advantage of its nice graphical user interface�
The XPCE object oriented environment ���� built on top of
SWI�Prolog has been used as the basic implementation plat�
form�

� The domain level

The ExClaim domain level is an extension of a description
logic �DL�� A brief outline of the DL used at this time in
Ex Claim will be given in the present section� Note however�
that due to the modularity of the system� any DL imple�
mentation that supports knowledge revision can be used in
Ex Claim�

��� The description logic

Description logics��DLs� are descendants of the famous KL�
ONE language ��� and can be viewed as formalizations of the
frame�based knowledge representation systems� They are also
related to other knowledge representation formalisms like se�
mantic networks and object�oriented languages and thus are
very useful for representing taxonomic knowledge�

Terminological knowledge representation systems are hy�
brid systems which separate the described knowledge in two
categories� terminological and assertional knowledge� The ter�
minological knowledge is generic and refers to classes of ob�
jects and their relationships �being stored in the so called
TBox�� while the assertional knowledge describes particular
instances� or individuals �which are stored in the ABox��

The terminological language provides a concept description
language which uses two kinds of terminological knowledge�
namely concepts and roles��Concepts are unary predicates in�
terpreted as sets of individuals� whereas roles represent binary
predicates interpreted as binary relations between individuals�

The main advantages of DLs w�r�t� other knowledge repre�
sentation formalisms are�

� DLs have a formally de	ned declarative semantics� i�e� the
meaning of the constructions used is not described opera�
tionally �for example� by an implementation�� but in terms
of admissible models �in the sense of model theory in formal
logic��

� The inference services o�ered by a DL can be described by
means of its declarative semantics�

� The theoretical analysis of the inference mechanisms is pos�
sible� The following properties are analysed�

�� Correctness �facts provable by inference are semantically
valid��

�� Completeness �all valid facts are provable��
�� Decidability and complexity of the algorithms�

� Also known as terminological logics� or term subsumption
languages�

� DL roles should not be confused with KADS inference roles�

����� Concept and role constructors� Declarative
semantics

The ontological primitives of a DL include concepts� roles�
attributes �functional roles� and individuals�� In the case of
individuals� we make the �unique names assumption�� which
is quite frequent in the 	eld of databases and knowledge bases�

The concept constructors of the description logic used in
Ex Claim are presented in Table �� whereas the relevant role

and attribute constructors are presented in Table ��

Concept Symbolic Semantic interpretation

top � �I

bottom � �
and�C�� C�� C� � C� CI

�
�CI

�

or�C�� C�� C� � C� CI

�
�CI

�

not�C� �C �I nCI

all�R�C� 	R	C fx
 �I j	y��x�y�
 RI � y
 CIg
fx
 �I jRI�x� � CIg

exists�R�C�
R	C fx
 �I j
y��x� y�
 RI � y
 CIg
fx
 �I jRI�x�� CI �
 �g

atleast�n�R� �n R fx
 �I jjRI�x�j � ng
atmost�n�R� �n R fx
 �I jjRI�x�j � ng
exactly�n� R�
n R fx
 �I jjRI�x�j
 ng

Table �� Concept constructors and their semantics

Role Symbolic Semantic interpretation

and�R�� R�� R� �R� RI

�
�RI

�

inv�R� R�� f�y�x�j�x� y�
 RIg
domrestr�R�C� CbR f�x� y�j�x� y�
 RI � x
 CIg
restrict�R�C� RcC f�x� y�j�x� y�
 RI � y
 CIg

Table �� Role constructors and their semantics

In description logics� a terminology is speci	ed by a set of
terminological axioms �de	nitions� which select the models
of terminology out of all possible interpretations� The most
important forms of terminological axioms are presented in
Table ��

The assertional axioms are used to de	ne instances of con�
cepts and roles� Unlike terminological axioms� which are in�
tensional descriptions of concepts and roles� assertional ax�
ioms are extensional descriptions� They can take the forms
presented in Table ��

The semantics of a DL is a declarative semantics based on
the notions of model and interpretation�

An interpretation I of a knowledge base �made up of a ter�
minological and an assertional component� consists of a set
�I called the interpretation domain and a function �I �the in�
terpretation function�� The interpretation function maps each

� The following notations will be used throughout the paper	 CN
represent concept names� RN�role names� AN�attribute names�
IN�individual names� Also� C� R� A will designate composite
concepts� roles and attributes respectively�

Axiom Semantics

defconcept�CN�C� CN
 C CNI
 CI

defrole�RN�R� RN
 R RNI
 RI

defattribute�AN�A� AN
 A ANI
 AI

defprimeconcept�CN�C� CN � C CNI � CI

defprimerole�RN�R� RN � R RNI � RI

defprimeattribute�AN�A� AN � A ANI � AI

inclusion�C��C�� C� � C� CI

�
� CI

�

equal�C��C�� C�
 C� CI

�

 CI

�

disjoint��CN��� � � �CNn��
nV
j��

CNj
 �
nT

j��

CNI

j
 �

Table �� Terminological axioms

Axiom Semantics

assert ind�IN�C� IN
 C INI
 CI

assert ind�IN��IN��R� �IN�� IN��
 R �INI

�
� INI

�
�
 RI

or IN� R IN�

Table �� Assertional axioms

concept name CN to a subset CNI � �I of the interpreta�
tion domain� and each role name RN to a binary relation
RNI on �I �a subset of �I��I�� Attributes names AN are
interpreted as partial functions ANI � Dom�ANI� � �I�
where Dom�ANI� � �I is the domain of de	nition of the
partial function� whereas the individuals IN are interpreted
as elements of the interpretation domain INI � �I� Accord�
ing to the �unique names assumption�� di�erent individual
names denote di�erent elements of �I�

IN� �� IN� 	 INI

� �� INI

� �

The interpretation function is extended to the set of terms
representing general concepts� roles and attributes respec�
tively� as shown in Tables � and �� This type of semantics
is usually called �descriptive semantics��

The terminological axioms specify �generic
 knowledge� in�
dependent of particular individuals� while the assertional ax�
ioms are meant for describing individuals �or instances� of the
TBox concepts and roles� An interpretation I veri	es the ter�
minological �assertional� axioms if and only if it veri	es the
semantic relationships from Table � �Table � respectively��
An interpretation which veri	es all the terminological and as�
sertional axioms of a knowledge base hT �Ai is called a model

of hT �Ai�
The extension of a concept C �of a role or attribute R� in

a model I is by de	nition the set in which it is interpreted�
CI �RI respectively��

In the following� we shall assume that the terminological
axioms are general inclusions� the other types of concept def�
initions being easily reducible to inclusions� In particular� we
shall allow multiple de	nitions of concepts and terminological
cycles��

� The majority of existingDL systems prohibit the existence of ter�

Unlike most implemented logical and database systems��
DLs use the open world assumption �it is not automatically
assumed that all the individuals known at one moment are all
possible individuals�� The unique names assumption is also
made �individuals bearing di�erent names are supposed to be
di�erent��

����� Inference services in description logics

The inference services provided by a DL can be described
formally as follows�

�� Satis�ability testing� The concept C is satis	able w�r�t� the
knowledge base hT �Ai i� there exists a model I of hT �Ai
in which C has a non�empty extension� CI ��
�

�� Subsumption testing� The concept C subsumes D w�r�t� the
knowledge base hT �Ai� that is subsumes�C�D�� if and only
if the extension of C includes the extension of D in all
models I of hT �Ai� DI � CI �

�� Equivalence testing�Concepts C and D are equivalent w�r�t�
the knowledge base hT �Ai i� their extensions are identical
in all models I of hT �Ai� DI � CI �

�� Classi�cation of a concept C in T implies the identi	cation
of the most speci	c subsumers of C and of its most general
subsumees in T �
The hierarchy of concepts ordered according to the sub�
sumption relation is automatically constructed by the clas�
si	er�

�� The knowledge base hT �Ai is consistent i� it admits a non�
empty model I�

�� Determination of the facts deducible from the knowledge

base�

�� �Realization� consists in determining the set of the most
speci	c concepts C in the terminology T whose instance
is some given individual IN �occurring in an assertional
axiom�� IN � C�

�� Instance retrieval consists in retrieving all the instances IN
�occurring in the assertional axioms� of a given concept C�

In a language including concept negation� all of the above
services make use of the knowledge base consistency algo�
rithm� For example� subsumption testing subsumes�C�D� re�
duces to unsatis	ability testing of the concept and�not�C��D��
More precisely� we have the following results�

����� Reduction of the inference services to KB
consistency testing

All the inference services o�ered by a DL can be reduced �in
linear time� to the knowledge base consistency test� in the
following way�

�� The concept C is satis	able w�r�t� hT �Ai i� the knowledge
base hT �A�fy � Cgi is consistent �y being a new instance
name��

minological cycles � i�e� they do not allow a concept name to ap�
pear �neither directly� nor indirectly� in its own de�nition� Also�
a concept or role name is usually allowed to occur only once in
the left hand side of a de�nition� The absence of terminologi�
cal cycles drastically reduces the expressivity of the language

without them we are unable to represent recursively de�ned data
structures such as lists or trees�

� which usually use a form of closed world semantics
� This is possible only if the language includes concept negation�

�� C is subsumed by D �C � D� w�r�t� hT �Ai i� C �
D is
not satis	able w�r�t� hT �Ai�

�� The individual x is an instance of the concept C �i�e� x � C�
i� the knowledge base hT �A� fx �
Cgi is inconsistent�

The knowledge base consistency test is usually performed
using a tableaux based calculus and will not be described here�
For more details� see e�g� ���� ���

The universal terminological language described in ���� has
an undecidable subsumption problem� For this reason� the
languages used in practice usually implement only a subset
of the above�mentioned constructors� in order to ensure the
decidability of subsumption testing �which is essential for this
class of languages��

As could be expected� there is a tight interdependence be�
tween the expressiveness of the language �which depends on
the concept
role constructors used� and the complexity of the
subsumption and satis	ability testing algorithms�

As far as expressiveness is concerned� the class of languages
with polynomial �subsumption and satis	ability testing� algo�
rithms is too restrictive� since only extremely simple domains
can be represented in them�

On the other hand� the complete subsumption and satis�
	ability testing algorithms for more expressive languages are
usually NP�complete� co�NP�complete� PSPACE�complete�
EXPTIME�complete or worse� However� one should constantly
bear in mind the fact that such high complexities correspond
to the worst cases� while the algorithms may behave well in
practical cases� KRIS ��� and recently Crack ��� and RegAL
��� are the only operational systems with complete algorithms�

In conclusion� DLs are not merely yet another approach
to the domain knowledge representation� but also an attempt
at formalising the representation systems used so�far� They
provide powerful and� what is even more important� complete
inference services �as opposed to semantic networks� which
have a procedural semantics and in which the incomplete in�
ference services are described by an implementation and not
declaratively as in the case of DLs��

��� The domain level extension

In order to be usable in real�life applications� our KR�R lan�
guage will have to be able to describe collections of objects
�such as sets or lists of instances
tuples�� However� existing
�implemented� DL systems usually lack constructors for sets
or lists of objects	and we therefore have to extend the de�
scription logic with such collections of concept instances or
role tuples� The inherent incompleteness due to the fact that
such collections are not taken into account in DL inferences
is of no practical consequence since�

� unlike most logic and database systems� description logics
use the open world assumption �it is not automatically as�
sumed that an individual that cannot be proven to be the
instance of a given concept C is the instance of its negation

C��

	 Some description logics provide the one of�IN�� � � � � INn� con�
struct which denotes the concept whose extension is given by
the set of instances fIN�� � � � � INng� However� what we need is
a concept construct whose instances denote sets or lists of other
instances �or tuples��

� the terminological and assertional levels of the DL are com�
pletely separated �it is impossible to have a DL instance
that represents a collection of other DL instances��

This domain extension leads to a hybrid domain level in
which simple instances are represented in the DL� while col�

lections �sets or lists� are stored in the extension�
The internal representation of a domain store element is

the following�

domain store

�
simple�

concept
relation

�
C
R

�
IN

�IN �� IN ���

�

domain store

�
set�list�

concept
relation

�
C
R

�
�IN�� IN�� � � ��

��IN �

�� IN
��

� �� � � ��

�
�

�Since there exists the possibility of confusing the DL�roles
with the inference roles� we shall refer in the following to DL�
roles as relations��

A domain�level concept or �binary� relation can have an
associated DL description� represented relationally as

DL description

�
concept
relation

�
C
R

�
DL C
DL R

�
�

Here C and R stand for domain level concept
relation names�
while DL C and DL R represent their associated DL descrip�
tions�

The following primitives should be used for asserting do�
main store instances�

assert domain store

�
simple�

concept
relation

�
C
R

�
IN

�IN �� IN ���

�

assert domain store

�
set�list�

concept
relation

�
C
R

�

�IN�� IN�� � � ��
��IN �

�� IN
��

� �� � � ��

�
�

� The meta�level architecture

Ex Claim has a meta�level architecture speci	c to KADS which
structures the knowledge corresponding to a model on three
levels�

� the domain level
� the inference level
� the task level�

Figure � presents a graphical representation of the Ex Claim
architecture �which is typical for the KADS expertise model
������

Although the decomposition of a given model in the three
knowledge levels may not be unique� it is usually relatively
easy to map an informal description of the model onto this
three�level architecture�

The domain level mainly encodes the domain ontology� The
corresponding process of conceptualisation consists in delim�
iting the relevant concepts and relations between the concepts
of the domain�

�
�
�
�C � R���bb��bbDL

�
�
�
�C R��bb��bbD

r
�
�

�
�

� I �
�
�

�
�

�
���

�
��

S
Sw

I

�
�

�
�T� �T

� �

Figure �� The Ex Claim architecture

Often� the conceptualisation of a given situation is not
unique and usually decisively in�uences the e�ciency �and
sometimes even the possibility� of problem solving in the given
domain� Changing the conceptualisation may sometimes make
the expression of certain types of knowledge impossible� That
is why 	nding an appropriate conceptualisation for a given
problem �in other words� its relevant representation� can be
at least as di�cult as solving the problem� since we may re�
gard the problem�solving process as a search �in the space
of all possible conceptualisations� for a conceptualisation in
which the original problem reduces to an immediately solvable
problem�

The inference level consists of a set of primitive problem
solving actions� whose internal functioning is irrelevant from
the point of view of the conceptual problem solving model� In�
ferences �represented graphically as ovals� have a set of input
and output roles �depicted in diagrams as rectangles�� which
denote� roughly speaking� the arguments of the inference�

Inference roles represent a kind of meta�level abstraction
of domain level objects �concepts� relations� etc�� In order to
enhance the �exibility of the mapping between inference roles
and domain level objects� the following types of inference role
domain links have been introduced�

� simple �refers a single DL instance�
� set �refers a single domain level instance representing a set

of DL instances�
� list �refers a single domain level instance representing a list

of DL instances�

Domain links are represented in Ex Claim as�

domain link

�
InferenceRole�

simple
set
list

�
concept
relation

�
C
R

�
�

Although the execution of inferences induces domain level
operations� inferences do not manipulate domain level objects
directly� Since they refer to domain object only indirectly via

inference roles� �partial� models in which the domain�level has
been stripped o� �removed� can be easily reused in a di�erent
domain� Reusability is thus a key feature of KADS expertise
models as it enables the construction of domain�independent
libraries of models�

The inference structures represent the data��ow of a given
model� The control of the various inferences is accomplished
at the task level � Tasks can be either

� primitive �corresponding to an inference��
� composite �built from other subtasks�� or
� transfer tasks �which interact with the environment��

� The inference level

Inferences are primitive problem solving actions which per�
form elementary problem solving operations �i�e� operations
whose internal functioning is irrelevant from the point of view
of the conceptual model��

Inferences operate on inference roles� which can be either
inputs or outputs�

Input roles implement the upward re�ection rules of the
meta�level architecture� i�e� they are responsible� broadly speak�
ing� for retrieving domain level instances� More precisely� in�
put roles can perform the following types of domain opera�

tions�

� retrieve �retrieve an instance of the domain level object
linked to the input role� but do not remove the instance
afterwards�

� noretrieve �no instances are retrieved from the domain� as
if no domain operation was performed� the value of the role
is set in the call of the inference rather than retrieved from
the domain�

� delete �retrieves a domain level instance and subsequently
removes it� the domain level description logic must provide
facilities for knowledge revision in order to support this
operation��

Output roles implement the downward re�ection rules of
the meta�level architecture since they are responsible mainly
for storing object instances in the domain level� More pre�
cisely� output roles can perform the following types of domain
operations�

� store ��instances
 of the given output role are asserted in
the domain�

� nostore �the �instances
 of the output role are not re�ected
in the domain� instead� their value is passed to the caller
of the inference��

Inferences perform automatic domain operations on their
input
output roles� Since no direct domain reference is made
in inferences �or tasks�� these levels of the model are domain�
independent and thus reusable �the code of the inference body
can remain exactly the same even after changing the domain
level��

The automatic domain operations in inferences can be re�
garded as a more evolved form of parameter passing in an
inference call� For instance� the operation types �noretrieve

and �nostore
 perform no actual domain operations and rely

on the explicit parameter passing mechanism in the call of
the inference�

On the other hand� the operation types �delete
 and �store

perform domain operations and should be backtrackable if
we intend to provide a non�deterministic computation model�
This in turn requires the non�monotonicity of the domain
level and the existence of knowledge revision facilities in the
corresponding description logic�

The backtrackability of domain operations requires that
whenever the inference �that performed the corresponding do�
main operation� fails� the state of the domain store and the
description logic is restored to the state before the call of the
failing inference� The same happens when new solutions are
sought for by backtracking�

In order to further enhance the �exibility of the inference
level primitives� two types of role mappings have been pro�
vided �see also Figure ���

� simple �refers to a single domain store element associated
with the inference role�

� set �refers to the set of all simple domain store elements
associated with the inference role�

�
�
�
�r I�

simple

�
�
�
�

�r I

set

Figure �� Role mapping types

The Ex Claim representation of role mappings and the as�
sociated role operations is�

role mapping

�
Inference�

InputRole
OutputRole

� simple�set�

noretrieve�retrieve�delete
nostore�store

�
�

Note that a �simple
 role operation involves a single
do�
main store element of the form�

domain store

�
simple
set
list

�
concept
relation

�
C
R

� Instance

�
�

From the conceptual point of view� inferences are primitive
problem solving actions and their internal structure as well as
their functioning need not be further detailed� However� if we
are aiming at an operational system� the knowledge engineer
would have to provide the code of the inference bodies in order
to be able to execute the model�

For reasons of simplicity �and also since ExClaim itself is
implemented in Prolog�� inference bodies are written in Prolog
according to the following parameter passing convention�

inference�name��input�role�i � Value�i� ���	�

�output�role�j � Value�j� ���	�
�

prolog�code�

 irrespective of the domain link type� which can be	 simple� set or
list�

Therefore� for each inference� the user will have to write a
�set of� clause�s� like above� The heads of such clauses have
two arguments representing the lists of input and output role
bindings� A role binding is a term of the form role name �

RoleValue �RoleValue can be a variable or a �partially� in�
stantiated Prolog term�� The order of the role bindings in the
binding lists is irrelevant�

An inference body can contain calls to other inferences or
tasks� but this is not recommended as a good modelling ap�
proach �since inferences should be thought of as primitive
executable objects��

In ExClaim� inferences are executed using the following
primitive�

exec�inference�inference�name�

�input�role�i � InputValue�i� ���	�

�output�role�j � OutputValue�j� ���	��

The following operations are performed in exec�inference�

� unify the input arguments of the body with those of the
call

� perform domain operations for the input roles �noretrieve�
retrieve� delete�

� execute the inference body
� unify the output arguments of the body with those of the

call
� perform domain operations for the output roles �nostore�

store��

All the above steps of exec�inference are backtrackable� As
already mentioned� backtracking to a domain operation may
involve domain level knowledge revision too�

� The task level

The task level embodies the control knowledge of a model�
Tasks do not perform domain operations since they are viewed
as composite executable objects �only the primitive executable
objects� i�e� the inferences� are allowed to perform domain op�
erations��

Since no domain operations are associated to task roles�
tasks are� from an operational point of view� like inferences
with �noretrieve
 input roles and �nostore
 output roles�

One and the same role can be an inference role and a task
role at the same time� �For example� the input role of a com�
posite task can also be the input role of a component inference
or subtask� The actual domain operations are performed when
the inference is executed��

Parameter passing in tasks is done explicitly in the call of
the task� From the programmer�s point of view� task bodies
have the same syntax as inference bodies�

task�name��input�role�i � InputValue�i� ���	�

�output�role�i � OutputValue�j� ���	�
�

prolog�code�

Task bodies can� of course� contain calls to other inferences
and subtasks�

Executing a task with

exec�task�task�name�

�input�role�i � InputValue�i� ���	�

�output�role�j � OutputValue�j� ���	�

amounts to

� unifying the input arguments of the body with those of the
call

� executing the body
� unifying the output arguments of the body with those of

the call�

All the above execution steps of exec�task are backtrack�
able�

Figure � depicts the basic Ex Claim architecture viewed
from a functional viewpoint�

DL

D

T

I

�

�

�
�

�

�

��
�	

�
�
�
�

exec inferenceexec task

store
retrieve
delete

ask
assert ind
delete ind

domain operation

Figure �� The Ex Claim architecture from a functional
viewpoint

	 A simple example

A very simple example of a resource allocation problem will
be used to illustrate the facilities of Ex Claim�

Consider the following allocation problem� In a university
department there is a set of classes to be taught by a set of
teachers� Classes can be either courses or seminars �but not
both�� while teachers are either professors or assistants �but
not both�� Let us further assume that assistants are allowed
to teach only seminars and that the list of classes familiar to
�known by� the various teachers is also given�

Of course� a teacher can teach a given class only if he knows
it� Also� we require that each class should be taught by a
teacher and that a teacher cannot teach more than one class
�of course� there may be teachers that don�t teach any class
at all��

The goal of the problem is to 	nd an assignment of teach�
ers �resources� to classes �requests� such that all the above
constraints are veri	ed�

The most straightforward conceptualisation of this problem
involves de	ning the following concepts�

defconcept�teacher� or�prof� assistant���

defprimeconcept�prof� teacher��

defprimeconcept�assistant� all�teaches� seminar���

disjoint��prof� assistant	��

defconcept�class� or�course� seminar���

defprimeconcept�course� class��

defprimeconcept�seminar� class��

disjoint��course� seminar	��

defprimerole�knows��

defprimerole�teaches��

The relations teaches and knows link a teacher with the
course he teaches or knows respectively�

Given the relation knows� one must 	nd the relation teaches

subject to all the problem constraints� Some of these con�
straints are easily expressible in the description logic �like the
ones presented above�� Other constraints may not be express�
ible in the DL and we may have to take them into account
at the inference level� For instance� the constraint mentioning
that �a teacher can teach a given class only if be knows it

cannot be represented in the DL unless the particular DL we
are using allows the famous role�value map constructor�

equal�subset�teaches� knows�� top��

However� since role�value maps �together with role compo�
sition and concept conjunction� induce the undecidability of
the DL inference services ����� they are usually not provided
in implemented DL systems with complete algorithms� There�
fore� we will have to encode this constraint at the higher levels
of the model �inference and
or task level��

On the other hand� the constraints that each class should
be taught by a teacher and that a teacher cannot teach more
than one class could easily be represented in existing DLs as�

class � exists�inv�teaches�� top�

teacher � atmost��� teaches��

In fact� if all the problem constraints could be represented
in the description logic� we could use the DL inference ser�
vices to solve our problem without additional support from
the inference or task level �DL inference services are usually
reducible to the knowledge base consistency test� which typ�
ically works by constructing models of the KB� The model
constructed while proving the KB consistency can then be
used to extract the solution of the problem��

However� not all constraints are expressible in a given DL�
so that the additional levels are really necessary� Also� we may
wish to exert a tighter control on the problem solving process
and thus inference and task levels are again needed �relying
entirely on the description logic inference services may turn
out to be too expensive from a computational point of view��

Last� if we are trying to develop reusable models� hav�
ing separate domain� inference and task levels turns out to
be again very useful� For instance� stripping o� the domain
level from our simple allocation example leads to a reusable
problem�solving model for general resource allocation prob�
lems �teachers are abstracted as resources� while classes are
viewed as requests�� We could also reuse the domain model in
a di�erent problem involving teachers and classes�

After having completely described the domain level of our
simple model� we proceed to the construction of the inference
level� An extremely simple non�deterministic approach will be
followed�

Assume that a partial assignment �of the teaches relation�
has been constructed up to this point and that we are cur�
rently attempting to extend this partial assignment with a
new tuple for teaches chosen from the tuples of knows and
linking a class that has not already been assigned and a

teacher who is still free �teaches no other class�� The cor�
responding inference structure is depicted in 	gure �� Note
that we have used generic �abstract� names for the inference
roles denoting teachers� classes and the relations teaches and
knows� Classes are regarded as requests� whereas teachers are
the resources to be allocated to these requests� The tuples of
teaches are thought of as assignments� whereas the tuples of
knows are just candidate�assignments�

Figure �� The non�deterministic inference structure for the
�teachers� problem

The inference get�request chooses a request that has
not been assigned yet� This chosen�request is passed on to
assign�resource�which tries to retrieve a candidate assign�

ment for this request� If it succeeds� the assignment is stored
in the domain level� The whole process is repeated �at the
task level� until there are no more unassigned requests �case
in which it terminates with success� or until a failure occurs
�case in which the system automatically backtracks to a pre�
vious state�� Backtracking involves not only the inference and
task levels� but also the domain level since the DL has to be
restored to its previous state �before the call��

Note that inference and task bodies are extremely simple
since we are heavily relying on the automatic domain op�
erations performed by inferences� We are also relying on the
powerful description logic inference mechanisms �mainly when
doing domain store retrieval but also when checking for global
consistency after a solution has been found��

Note that the problem�solving process involves computa�
tions �deduction� at two di�erent levels�

� at the domain level �DL deduction�
� at the inference and task levels �execution of inferences and

tasks��

This observation shows that not only the description of the
problem� but also the problem�solving process itself is dis�
tributed at di�erent levels� We feel that this separation of
computations �performed while solving the problem� is ex�
tremely useful and natural� leading to a higher reusability of
the models� For instance� a change in the domain model does
not require modi	cations at the inference or task levels� Let
us illustrate this with an example�

Consider a problem instance in which there are only two
teachers �p� and p�� and two classes �a course c� and another
class c���

assert�domain�store�simple� concept� teacher� p���

assert�domain�store�simple� concept� teacher� p
��

assert�domain�store�simple� concept� course� c���

assert�domain�store�simple� concept� class� c
��

assert�domain�store�simple� relation� knows� �p��c�	��

assert�domain�store�simple� relation� knows� �p��c
	��

assert�domain�store�simple� relation� knows� �p
�c�	��

assert�domain�store�simple� relation� knows� �p
�c
	��

If we are not told whether p� or p� are professors or as�
sistants� the system will return two alternative allocations�
namely ��p�� c��� �p�� c��� and ��p�� c��� �p�� c����

However� if we now specify that p� is an assistant � only the
second assignment will be retained as a consistent one� since
an assistant �p�� cannot teach a course �c���

 Subtleties

�� Eager versus lazy inference
mechanisms

As already pointed out� description logics provide non�trivial
domain level inference mechanisms� For reasons of e�ciency�
however� these mechanisms can be either

� eager � are performed automatically in certain key situa�
tions� for example instance assertions or queries �ask oper�
ations�

� lazy� are activated only upon explicit invocation� for exam�
ple global consistency check�

Eager deduction mechanisms are usually faster �ask does a
limited amount of theorem proving� but does not check global
consistency�� whereas lazy ones are computationally hard and
should be used only when absolutely necessary�

The global KB consistency check is a typical example of a
lazy deduction mechanism� In order to ensure the KB consis�
tency after each assertion� the consistency test should be in�
voked after each such operation �in Ex Claim there is an option
that turns these checks on�� However� this test is extremely
time expensive and should be avoided whenever possible by
explicitly testing for consistency in the critical points only
�the Ex Claim check�consistency option has to be turned
o���

�� Interaction between domain links and
role mappings

In the following� we intend to clarify the di�erence between a
situation �a� in which a role with a domain link of type �set

has a �simple
 role mapping to a certain inference I and a
situation �b� in which a role with a �simple
 domain link has
a mapping of type �set
 �to a certain inference I��

The structure in Figure ��a collects
asserts a single domain
store element of the form�

domain�store�set� concept� C� �x��� ���	�

whereas the one in 	gure ��b collects
asserts all simple in�
stances of C� �x�� x�� � � ��� with

domain�store�simple� concept� C� x�i�

for all i�

r�
�
�
�
�I� r���

C � C ��

set set	

�
�

	

�
�

�a�

r�
�
�
�
�

� I r���

	

�
�

	

�
�C ��C �

simplesimple

�b�

Figure �� Interaction between domain links and role mappings

�� Knowledge revision

Domain instances are deleted only if they were explicitly as�
serted and not if they are just deducible from explicitly as�
serted facts�

Consider for example the following concept de	nition

father � man � �child��

and the instance assertions

peter � man

�peter� john� � child�

The above knowledge base entails john � father�
Now consider a role r linked to the domain concept father �

If a role operation of type �delete
 is attempted on r� the
instance john � father will be retrieved� but since john �
father was not explicitly asserted� it will not be deleted �the
domain operation succeeds though��

� Conclusions

The following advantages of the approach presented in this
paper can be mentioned�

� easing the process of knowledge engineering in KBS devel�
opment�

� the meta�level architecture of the system enables the de�
velopment of reusable domain�independent problem solving
models �PSMs� and of application�independent ontologies�

� the possibility of developing domain�independent executable
libraries of PSMs�

� supporting the process of KBS validation by using the in�
ference services o�ered by the domain�level language�

� semantic consistency checking
� domain level deduction
� automatic concept classi	cation� knowledge structuring

and indexing�

Such inference services did not exist in other KADS oper�
ationalization environments� except maybe Si�ML��
FML�
However� deduction in a DL is faster than in full 	rst order
logic� on the other hand� expressivity is lower�

� the description logic used at the domain level can be re�
garded as a compromise between expressiveness and e��
ciency� The readability of DL formulas is also reasonably
high�

� ExClaim provides non�deterministic inference and task lev�
els� which rely on a non�monotonic domain level�
The lack of non�determinism is� in our opinion� an impor�
tant drawback for KBSs� Algorithms in KBSs� as opposed

to traditional software engineering environments� are com�
plex and usually non�deterministic� If only deterministic
structures are allowed� then one has to simulate the non�
determinism �this can be done in many di�erent ways and
can be domain�dependent since it may depend on the do�
main constraints�� But the model should be as abstract and
unique as possible� in order to be reusable�

The following main objectives will be pursued in our future
research�

� Demonstrate the usefulness of the knowledge level simula�
tion
execution facilities �o�ered by ExClaim� in KBS de�
velopment�

� Develop real�world knowledge based systems �KBS� appli�
cations using the ExClaim knowledge modelling environ�
ment�

We also plan to improve the implementation of Ex Claim
by developing user�friendly animation tools for the simulation
of KADS models as well as by assisting the KBS developer
with context sensitive help facilities �KADS is known to be
a complex methodology� so that providing such help facilities
would be extremely useful��

Facilities for automatic code generation starting fromKADS
models will also be provided�

We expect that the feedback obtained while developing ap�
plications will be essential for shaping the 	nal version of
Ex Claim�

Knowledge based system �KBS� development is a very com�
plex process� Any tools providing some automatic assistance
in this process would signi	cantly improve its e�ciency as well
as the reliability of the end product �the KBS�� The present
work tries to take some steps forward in this direction�

Acknowledgements

The research presented in this paper has been partly sup�
ported by the European Community project PEKADS �CP���
������ Thanks are due to Doina Tilivea and Stefan Tr!au san
for developing the graphical user interface of Ex Claim and
to Jan Wielemaker for support on using the XPCE environ�
ment� I would also like to thank Ullrich Hustadt and Renate
Schmidt for permitting the use of the Motel terminological
system ���� in this research�

REFERENCES

��� Aben M�� Balder J�� van Harmelen F� Support for the for�
malization and validation of KADS expertise models� Report
KADS�II�M��UvA�DM���a����� University of Amsterdam�
�����

��� Baader F�� Hollunder B�KRIS� Knowledge Representation
and Inference System � System Description� DFKI TM����
���

��� Badea Liviu� A uni�ed architecture for knowledge represen�

tation and reasoning based on terminological logics� Interna�
tional Workshop on Description Logics DL���� Roma �����

��� Brachman R�J�� Schmolze J�G� An Overview of the KL�
ONE Knowledge Representation System� Cognitive Science �
��� �����

��� Bresciani P�� Franconi E�� Tessaris S� Implementing and

testing expressive description logics� International Workshop
on Description Logics DL���� Roma �����

��� Buchheit M�� Donini F�M�� Schaerf A� Decidable Rea�
soning in Terminological Knowledge Representation Systems�

DFKI RR�������
��� de Giacomo G�� Lenzerini M� What�s in an Aggregate�

Foundations for Description Logics with Tuples and Sets�
Proc� IJCAI���� pp� ��������

��� Fensel D�� van Harmelen F�� A comparison of languages
which operationalize and formalize KADS models of exper�

tise� Report ���� Universit�at Karlsruhe� September �����
��� Hollunder B�� Nutt W� Subsumption Algorithms for Con�

cept Languages� DFKI RR�������
���� Hollunder B� Hybrid Inferences in KL�ONE�based Knowl�

edge Representation Systems DFKI Research Report RR����
���

���� Hustadt U�� Nonnengart A�� Schmidt R�� Timm J� Mo�

tel User Manual� Max Planck Institute Report MPI�I��������
September �����

���� Patel Schneider e�a�Term Subsumption in Knowledge Rep�
resentation� AI Magazine� Summer ����� p� ���

���� Patel�Schneider P�F� Undecidability of Subsumption in
NIKL� AI �� ������� pp� ��������

���� Schild Klaus� Undecidability of Subsumption in U� KIT Re�
port Technische Universit�at Berlin� October �����

���� Schild Klaus� A correspondence theory for terminological
logics� preliminary report� IJCAI����

���� Schmidt�Schau� M�� Smolka G� Attributive concept de�
scriptions with complements� Arti�cial Intelligence�� ���� pp�
����� �����

���� Schmidt�Schau� M� Subsumption in KL�ONE is undecid�

able� Proceedings KR���� pp� ��������
���� Schreiber G�� Wielinga B�� Breuker J� KADS� A Prin�

cipled Approach to Knowledge�Based System Development�
Academic Press� �����

���� Schreiber G�� Wielinga B�� Akkermans H�� Van de
Velde W�� de Hoog R� CommonKADS� A comprehen�

sive methodology for KBS development� Report KADS�
II�M��PP�UvA�������� University of Amsterdam� �����

���� Sowa J�F� �ed� Principles of Semantic Networks� Morgan
Kaufmann �����

���� Wielinga B�J�� Schreiber A�Th�� Breuker J�A� KADS�
A Modeling Approach to Knowledge Engineering� Knowl�
edge Acquisition � ���� special issue �The KADS approach
to knowledge engineering�� also Report KADS II�T���� Uni�
versity of Amsterdam� �����

���� Wielinga B�J� �ed�� Expertise Model De�nition Document�

Report KADS II�M��UvA��������� University of Amster�
dam� �����

���� Wielemaker J� SWI�Prolog ��	 Reference Manual� Univer�
sity of Amsterdam� �����

���� Wielemaker J��
Anjewierden A� Programming in PCE
Prolog� University
of Amsterdam� �����

