E,Clatzm: a hybrid language for knowledge
representation and reasoning using description
logics

Liviu Badea
ATl Research Department
Research Institute for Informatics
8-10 Averescu Blvd., Bucharest, Romania
e-mail: badea@roearn.ici.ro

Abstract.

This paper presents E,Claim, a hybrid language for knowl-
edge representation and reasoning. Originally developed as an
operationalization language for the KADS knowledge based
systems development methodology, F,Claim has a meta-level
architecture: it structures the knowledge on three levels, namely
the domain, inference and task level. An extension of a de-
scription logic is used for implementing the domain level. The
inference and task levels are procedural and support non-
determinism (inferences and tasks being backtrackable). This
in turn requires a non-monotonic domain level.

Description logics offer a set of inference services (not avail-
able in other KR languages) which are extremely useful in
knowledge modelling. Such inference services include domain-
level deduction, semantic consistency verification and auto-
matic classification of concepts. Note that most of the exist-
ing KBS development tools and environments do not provide
any facilities for model consistency or completeness checking.
We argue that such validation and verification facilities are
extremely important in assisting a knowledge engineer in de-
veloping models. In fact, these might be the main facilities a
user would expect from a computer-aided KBS development
tool.

The final goal of this research is to use £y Claim for develop-
ing real-world applications and to demonstrate the usefulness
of the knowledge level simulation/execution facilities offered
by E;Claim in KBS development.

1 Introduction

This introductory section describes the present state in knowl-
edge based systems development tools and then gives a brief
description of our approach.

Knowledge based systems (KBS) are typically large and
complex software systems aiming at solving difficult prob-
lems in knowledge-intensive domains. Knowledge engineer-
ing in general and KBS development in particular are no-
toriously difficult not only because of the sheer size of the
problem description, but also because they typically involve
complex ontologies, which are usually not easily representable
in a single knowledge representation formalism. The lack of

well-established algorithms in such complex domains leads
to computational problems due mainly to the large search
spaces involved. The process of knowledge acquisition i1s also
more difficult than in other cases, but viewing it as a process
of knowledge modelling rather than a process of knowledge
transfer (from the expert to the machine) helps to alleviate
some of these problems.

In order to assist the knowledge engineer in developing
KBSs, a large number of KBS development tools have been
built since the eighties. Two main tendencies were followed in
the early years.

On one hand, a great number of expert system “shells”
were put forward. Systems like KEE, ART, Knowledge Craft,
Nexpert Object etc. were successfully used in building a large
number of expert systems. These “shells”, however, had an
important drawback: they used a given symbol-level repre-
sentation (for instance a frame-based system augmented with
rules, daemons, message passing, etc.), which is usually not
appropriate for describing reusable knowledge-level models.

An alternative approach to building KBS development tools
was inspired by the traditional software engineering (SE) tools.
SE tools are nevertheless inappropriate as KBS tools since
the domain knowledge (the ontology) is much more complex
in the case of a KBS than in the case of a typical software
system.

The remarks above suggest the need for a knowledge-level
KBS development tool that would provide at least some of
the nice simulation facilities offered by traditional SE tools.
Such facilities are much harder to develop in the case of
KBSs, since, as already mentioned above, we are dealing with
much more complex domain knowledge. An extreme approach
would be to use full predicate logic as a domain description
language and to support the reasoning involved with a full
first order logic theorem prover. This approach (followed in
the FML component [1] of the CommonKADS Workbench)
can be very inefficient in complex cases. Also, the readability
of model specifications may sometimes be quite low, especially
when dealing with complex logic formulae.

In order to support knowledge-level knowledge modelling,
a series of methodologies and specification languages have
been put forward, the most important ones being the KADS

methodology [18] in Europe, KIF and Ontolingua in the US.

In order to support the KADS methodology with executable
tools, a number of KADS operationalization languages and
environments have been developed: Si(ML)?/FML, OMOS,
MoMo, KARL, MODEL-K, FORKADS [8] etc. Most of these
languages are either very expressive, formally sound but com-
putationally ineficient (sometimes even intractable), or they
have a more procedural semantics, being less expressive, but
more tractable.

This paper proposes using a class of knowledge represen-
tation languages, namely the description logics, for both for-
malising and executing CommonKADS expertise models. The
following advantages of this approach can be mentioned.

First, description logics represent the formalism closest to
the KADS domain level. In fact, the design of the KADS
domain level was obviously inspired by the KL-ONE like lan-
guages [4].

Second, description logics offer a set of inference services
(not available in other KR languages) which are extremely
useful in knowledge modelling. Such inference services include
domain-level deduction, semantic consistency verification and
automatic classification of concepts. Note that most of the ex-
isting KBS development tools and environments do not pro-
vide any help for model consistency/completeness checking.
The issue of verifying (KADS) models has not been exten-
sively addressed, mainly due to the computational difficulties
involved. However, such validation and verification facilities
are extremely important in assisting a knowledge engineer in
building models. In fact, these might be among the very first
facilities a user would expect from a computer-aided KBS de-
velopment tool.

The FClaim knowledge modelling environment, presented
in this paper, is particularly interesting since it preserves its
runtime efficiency in spite of the fact that it uses a formal
knowledge representation language' at the domain level. It
may therefore be regarded as a reasonable trade-off between
expressiveness, readability and efficiency.

1.1 Brief description of F,Claim

EyClaim (Executable CommonKADS Language for Integrated
Modelling) is a knowledge modelling environment (based on
the CommonKADS methodology [19]) that adds operational-
ization features to the CommonKADS Workbench developed
in the KADS-II project. F;Claim is a logic-based language

(with a meta-level architecture and supporting non-determinism)

for describing and executing KADS models. The process of
knowledge engineering is thus improved by the model simu-
lation/execution facilities offered by the system.

The domain knowledge is extended with a description (ter-
minological) logic which provides fairly sophisticated infer-
ence services (such as domain-level deduction, semantic con-
sistency checking, automatic classification of concepts, knowl-
edge structuring and indexing).

The system has the meta-level architecture specific to KADS:
the knowledge is structured on three levels, namely the do-
main, inference and task knowledge. Since the inference level
refers the domain only indirectly via inference roles, the mod-
els are highly reusable.

I a description logic, which, although less expressive than full first
order logic, is more efficient

FEClaim supports non-deterministic reasoning, its domain
operations, inferences and tasks being backtrackable. Note
that, as opposed to traditional software engineering tools,
non-determinism is very useful in KBSs.

E;Claim is fully integrated in the CommonKADS Work-
bench and takes advantage of its nice graphical user interface.
The XPCE object oriented environment [24] built on top of
SWI-Prolog has been used as the basic implementation plat-
form.

2 The domain level

The FjClaim domain level is an extension of a description
logic (DL). A brief outline of the DL used at this time in
FEClaim will be given in the present section. Note however,
that due to the modularity of the system, any DL imple-
mentation that supports knowledge revision can be used in

EiClaim.

2.1 The description logic

Description logics®(DLs) are descendants of the famous KL-
ONE language [4] and can be viewed as formalizations of the
frame-based knowledge representation systems. They are also
related to other knowledge representation formalisms like se-
mantic networks and object-oriented languages and thus are
very useful for representing taxonomic knowledge.

Terminological knowledge representation systems are hy-
brid systems which separate the described knowledge in two
categories: terminological and assertional knowledge. The ter-
minological knowledge is generic and refers to classes of ob-
jects and their relationships (being stored in the so called
TBox), while the assertional knowledge describes particular
instances, or individuals (which are stored in the ABox).

The terminological language provides a concept description
language which uses two kinds of terminological knowledge,
namely concepts and roles.’Concepts are unary predicates in-
terpreted as sets of individuals, whereas roles represent binary
predicates interpreted as binary relations between individuals.

The main advantages of DLs w.r.t. other knowledge repre-
sentation formalisms are:

e DLs have a formally defined declarative semantics, i.e. the
meaning of the constructions used is not described opera-
tionally (for example, by an implementation), but in terms
of admissible models (in the sense of model theory in formal
logic).

e The inference services offered by a DL can be described by
means of its declarative semantics.

e The theoretical analysis of the inference mechanisms is pos-
sible. The following properties are analysed:

1. Correctness (facts provable by inference are semantically
valid).

2. Completeness (all valid facts are provable).

3. Decidability and complezity of the algorithms.

2 Also known as terminological logics, or term subsumption
languages.
3 DL roles should not be confused with KADS inference roles.

2.1.1

Concept and role constructors. Declarative
semantics

The ontological primitives of a DL include concepts, roles,
attributes (functional roles) and individuals.* In the case of
individuals, we make the “unique names assumption”, which
is quite frequent in the field of databases and knowledge bases.

The concept constructors of the description logic used in
FEClaim are presented in Table 1, whereas the relevant role
and attribute constructors are presented in Table 2.

Concept Symbolic Semantic interpretation
top T AT
bottom L 0
and«h,Cﬁ C1 ACo O%riOg
or(C1,C2) C1vCy Cfuct
not(C) -C AT\ CT
all(R,C) YR:C {z € AT|Vy.(z,y) € RT =y € CT}
{v € AT|RT(z) C C7)
exists(R,C) AR:C {z € AT|Fy.(z,y) € RT Ay € CT}
{z € ATIR (c) N C7 # 0}
atleast(n, R) >n R {z € AT||R%(z)| > n}
atmost(n, R) <n R {z € AT||RT(z)| < n}
exactly(n, R) = R {z € AT||R%(z)| = n}
Table 1. Concept constructors and their semantics
Role Symbolic Semantic interpretation
and(R1,R2) Ri ARz RInRI
inu(R) R~ {(s,2)l(2,9) € RT}
domrestr(R, C) C|R {(z,9)|(z,y) e RT Az € CT}
restrict(R, C) R|C {(=,9)|(z,y) € RT Ay € CT}

Table 2

Role constructors and their semantics

In description logics, a terminology is specified by a set of
terminological axioms (definitions) which select the models
of terminology out of all possible interpretations. The most
important forms of terminological axioms are presented in
Table 3.

The assertional axioms are used to define instances of con-
cepts and roles. Unlike terminological axioms, which are in-
tensional descriptions of concepts and roles, assertional ax-
ioms are extensional descriptions. They can take the forms
presented in Table 4.

The semantics of a DL is a declarative semantics based on
the notions of model and interpretation.

An interpretation T of a knowledge base (made up of a ter-
minological and an assertional component) consists of a set
(the in-
terpretation function). The interpretation function maps each

A7 called the interpretation domain and a function -*

4 The following notations will be used throughout the paper: CN
represent concept names, RN-role names, AN-attribute names,
IN—individual names. Also, ', R, A will designate composite
concepts, roles and attributes respectively.

Axiom Semantics
defconcept(CN,C) CN=C CNT =7
defrole(RN,R) RN =R RNT =R?
defattribute (AIl,A) AN = A ANT = AT
defprimeconcept (CH,C) CNCC CNT cc?
defprimerole (RN ,R) RN CR RNT c RY
defprimeattribute (Al,A) AN C A ANT C AT
inclusion(C;,Cs) Cy, C Cs C’I C C’I
equal(C;,Cs) Cp = Cs C’I C’I

n
disjoint([CHy,...,CH,]) A ON; =1 ﬂ CNT =9
=1 =1
Table 3. Terminological axioms

Axiom Semantics
assert_ind (IN,C) IN eC INTeC?
assert_ind(IN;,IN,,R) (INy,IN2) € R (IN%,IN;)ERI

OFINlR]%b

Table 4. Assertional axioms

concept name C'N to a subset CNZ C AT of the interpreta-
tion domain, and each role name RN to a binary relation
RN7 on AT (asubset of AT x AT). Attributes names AN are
interpreted as partial functions AN : Dom(ANT) = AT
where Dom(ANT) C AZ is the domain of definition of the
partial function, whereas the individuals /N are interpreted
as elements of the interpretation domain INZ € AZ. Accord-
ing to the “unique names assumption”,
names denote different elements of AZ:

different individual

INy # INy = IN{ £ INT.

The interpretation function is extended to the set of terms
representing general concepts, roles and attributes respec-
tively, as shown in Tables 1 and 2. This type of semantics
is usually called “descriptive semantics”.

The terminological axioms specify “generic” knowledge, in-
dependent of particular individuals, while the assertional ax-
ioms are meant for describing individuals (or instances) of the
TBox concepts and roles. An interpretation 7 verifies the ter-
minological (assertional) axioms if and only if it verifies the
semantic relationships from Table 3 (Table 4 respectively).
An interpretation which verifies all the terminological and as-
sertional axioms of a knowledge base (7, .4) is called a model
of (T, A).

The extension of a concept C' (of a role or attribute R) in
a model 7 is by definition the set in which it is interpreted:
CT (R respectively).

In the following, we shall assume that the terminological
axioms are general inclusions, the other types of concept def-
initions being easily reducible to inclusions. In particular, we
shall allow multiple definitions of concepts and terminological
cycles.®

5 The majority of existing DL systems prohibit the existence of ter-

Unlike most implemented logical and database systems®
DLs use the open world assumption (it is not automatically
assumed that all the individuals known at one moment are all
possible individuals). The unique names assumption is also
made (individuals bearing different names are supposed to be

different).

2.1.2 Inference services in description logics

The inference services provided by a DL can be described
formally as follows:

1. Satisfiability testing. The concept C is satisfiable w.r.t. the
knowledge base (7T, A) iff there exists a model Z of (7, .A)
in which C has a non-empty extension: C7 # 0.

2. Subsumption testing. The concept C subsumes) w.r.t. the
knowledge base (T, A), that is subsumes (C,D), if and only
if the extension of C includes the extension of D in all
models Z of (T, A): DT c C*.

3. Fquivalence testing. Concepts C' and) are equivalent w.r.t.
the knowledge base (7, A} iff their extensions are identical
in all models Z of (7,A): D* = C”.

4. Classification of a concept C' in 7 implies the identification
of the most specific subsumers of C and of its most general
subsumees in 7.

The hierarchy of concepts ordered according to the sub-
sumption relation is automatically constructed by the clas-
sifier.

5. The knowledge base (T, A) is consistentiff it admits a non-
empty model 7.

6. Determination of the facts deducible from the knowledge
base.

7. “Realization” consists in determining the set of the most
specific concepts C' in the terminology 7 whose instance
is some given individual IN (occurring in an assertional
axiom): IN € C.

8. Instance retrieval consists in retrieving all the instances I N
(occurring in the assertional axioms) of a given concept C.

In a language including concept negation, all of the above
services make use of the knowledge base consistency algo-
rithm. For example, subsumption testing subsumes(C,D) re-
duces to unsatisfiability testing of the concept and (not (C) ,D).
More precisely, we have the following results.

2.1.3 Reduction of the inference services to KB
consistency testing

All the inference services offered by a DL can be reduced (in
linear time) to the knowledge base consistency test”in the
following way:

1. The concept C is satisfiable w.r.t. (T, .A) iff the knowledge
base (T, AU{y € C}) is consistent (y being a new instance
name).

minological cycles, i.e. they do not allow a concept name to ap-
pear (neither directly, nor indirectly) in its own definition. Also,
a concept or role name is usually allowed to occur only once in
the left hand side of a definition. The absence of terminologi-
cal cycles drastically reduces the expressivity of the language;
without them we are unable to represent recursively defined data
structures such as lists or trees.

6 which usually use a form of closed world semantics

7 This is possible only if the language includes concept negation.

2. Cis subsumed by D (C C D) wa.t. (T,A)if CA=Dis
not satisfiable w.r.t. {(7,.4).

3. The individual z is an instance of the concept C' (i.e. z € C)
iff the knowledge base (T, AU {z € ~C}) is inconsistent.

The knowledge base consistency test is usually performed
using a tableaux based calculus and will not be described here.
For more details, see e.g. [10, 9].

The universal terminological language described in [14] has
an undecidable subsumption problem. For this reason, the
languages used in practice usually implement only a subset
of the above-mentioned constructors, in order to ensure the
decidability of subsumption testing (which is essential for this
class of languages).

As could be expected, there is a tight interdependence be-
tween the expressiveness of the language (which depends on
the concept /role constructors used) and the complexity of the
subsumption and satisfiability testing algorithms.

As far as expressiveness is concerned, the class of languages
with polynomial (subsumption and satisfiability testing) algo-
rithms 1s too restrictive, since only extremely simple domains
can be represented in them.

On the other hand, the complete subsumption and satis-
fiability testing algorithms for more expressive languages are
usually NP-complete, co-NP-complete, PSPACE-complete,
EXPTIME-complete or worse. However, one should constantly
bear in mind the fact that such high complexities correspond
to the worst cases, while the algorithms may behave well in
practical cases. KRZS [2] and recently CRACK [5] and Reg AL
[3] are the only operational systems with complete algorithms.

In conclusion, DLs are not merely yet another approach
to the domain knowledge representation, but also an attempt
at formalising the representation systems used so-far. They
provide powerful and, what is even more important, complete
inference services (as opposed to semantic networks, which
have a procedural semantics and in which the incomplete in-
ference services are described by an implementation and not
declaratively as in the case of DLs).

2.2 The domain level extension

In order to be usable in real-life applications, our KR&R lan-
guage will have to be able to describe collections of objects
(such as sets or lists of instances/tuples). However, existing
(implemented) DL systems usually lack constructors for sets
or lists of objects®and we therefore have to extend the de-
scription logic with such collections of concept instances or
role tuples. The inherent incompleteness due to the fact that
such collections are not taken into account in DL inferences
is of no practical consequence since:

e unlike most logic and database systems, description logics
use the open world assumption (it is not automatically as-
sumed that an individual that cannot be proven to be the
instance of a given concept C' is the instance of its negation

-0).

Some description logics provide the one_of(INi,...,INy) con-
struct which denotes the concept whose extension is given by
the set of instances {INy,...,INy}. However, what we need is
a concept construct whose instances denote sets or lists of other
instances (or tuples).

o the terminological and assertional levels of the DL are com-
pletely separated (it is impossible to have a DL instance
that represents a collection of other DL instances).

This domain extension leads to a hybrid domain level in
which simple instances are represented in the DL, while col-
lections (sets or lists) are stored in the extension.

The internal representation of a domain store element is
the following:

concept C IN
relation © R ' (IN',IN')

).

(Since there exists the possibility of confusing the DL-roles
with the inference roles, we shall refer in the following to DI.-

domain_store (simple7

concept C
relation ' R’

[IN1,INs, ..

domain_store (set/lzst7 [(INI,IN}"),.

roles as relations.)
A domain-level concept or (binary) relation can have an
associated DL description, represented relationally as

concept
relation

o C DLC
DL-descrzptzon(" R DL.R) ’

Here C and R stand for domain level concept/relation names,
while DL_C and D L_R represent their associated DL descrip-
tions.

The following primitives should be used for asserting do-
main store instances:

concept C IN
relation © R ' (IN',IN')

assert_domain_store (simple7

concept C
b R b

relation
])

3 The meta-level architecture

assert_domain_store (set/list7

[INy,INa,..
[(IN],IN}),.

FEClaim has a meta-level architecture specific to KADS which
structures the knowledge corresponding to a model on three
levels:

o the domain level
o the inference level
o the task level.

Figure 1 presents a graphical representation of the FEjClaim
architecture (which is typical for the KADS expertise model
[22]).

Although the decomposition of a given model in the three
knowledge levels may not be unique, it is usually relatively
easy to map an informal description of the model onto this
three-level architecture.

The domain level mainly encodes the domain ontology. The
corresponding process of conceptualisation consists in delim-
iting the relevant concepts and relations between the concepts
of the domain.

Figure 1. The E,Claim architecture

Often, the conceptualisation of a given situation is not
unique and usually decisively influences the efficiency (and
sometimes even the possibility) of problem solving in the given
domain. Changing the conceptualisation may sometimes make
the expression of certain types of knowledge impossible. That
is why finding an appropriate conceptualisation for a given
problem (in other words, its relevant representation) can be
at least as difficult as solving the problem, since we may re-
gard the problem-solving process as a search (in the space
of all possible conceptualisations) for a conceptualisation in
which the original problem reduces to an immediately solvable
problem.

The inference level consists of a set of primitive problem
solving actions, whose internal functioning is irrelevant from
the point of view of the conceptual problem solving model. In-
ferences (represented graphically as ovals) have a set of input
and output roles (depicted in diagrams as rectangles), which
denote, roughly speaking, the arguments of the inference.

Inference roles represent a kind of meta-level abstraction
of domain level objects (concepts, relations, etc). In order to
enhance the flexibility of the mapping between inference roles
and domain level objects, the following types of inference role
domain links have been introduced:

o simple (refers a single DL instance)

o set (refers a single domain level instance representing a set
of DL instances)

o list (refers a single domain level instance representing a list
of DL instances)

Domain links are represented in EyClaim as:

simple concept C
domain_link | InferenceRole, set b ,
list relation ' R

Although the execution of inferences induces domain level
operations, inferences do not manipulate domain level objects
directly. Since they refer to domain object only indirectly via

inference roles, (partial) models in which the domain-level has
been stripped off (removed) can be easily reused in a different
domain. Reusability is thus a key feature of KADS expertise
models as it enables the construction of domain-independent
libraries of models.

The inference structures represent the data-flow of a given
model. The control of the various inferences is accomplished
at the task level. Tasks can be either

o primitive (corresponding to an inference),
e composite (built from other subtasks), or
o transfer tasks (which interact with the environment).

4 The inference level

Inferences are primitive problem solving actions which per-
form elementary problem solving operations (i.e. operations
whose internal functioning is irrelevant from the point of view
of the conceptual model).

Inferences operate on inference roles, which can be either
inputs or outputs.

Input roles implement the upward reflection rules of the
meta-level architecture, i.e. they are responsible, broadly speak-
ing, for retrieving domain level instances. More precisely, in-
put roles can perform the following types of domain opera-
tions:

o retrieve (retrieve an instance of the domain level object
linked to the input role, but do not remove the instance
afterwards)

e noretrieve (no instances are retrieved from the domain, as
if no domain operation was performed; the value of the role
is set in the call of the inference rather than retrieved from
the domain)

o delete (retrieves a domain level instance and subsequently
removes 1t; the domain level description logic must provide
facilities for knowledge revision in order to support this
operation).

Output roles implement the downward reflection rules of
the meta-level architecture since they are responsible mainly
for storing object instances in the domain level. More pre-
cisely, output roles can perform the following types of domain
operations:

o store (“instances” of the given output role are asserted in
the domain)

e nostore (the “instances” of the output role are not reflected
in the domain; instead, their value is passed to the caller
of the inference).

Inferences perform automatic domain operations on their
input/output roles. Since no direct domain reference is made
in inferences (or tasks), these levels of the model are domain-
independent and thus reusable (the code of the inference body
can remain exactly the same even after changing the domain
level).

The automatic domain operations in inferences can be re-
garded as a more evolved form of parameter passing in an
inference call. For instance, the operation types “noretrieve”
and “nostore” perform no actual domain operations and rely

on the explicit parameter passing mechanism in the call of
the inference.

On the other hand, the operation types “delete” and “store”
perform domain operations and should be backtrackable if
we intend to provide a non-deterministic computation model.
This in turn requires the non-monotonicity of the domain
level and the existence of knowledge revision facilities in the
corresponding description logic.

The backtrackability of domain operations requires that
whenever the inference (that performed the corresponding do-
main operation) fails, the state of the domain store and the
description logic is restored to the state before the call of the
failing inference. The same happens when new solutions are
sought for by backtracking.

In order to further enhance the flexibility of the inference
level primitives, two types of role mappings have been pro-
vided (see also Figure 2):

o simple (refers to a single domain store element associated
with the inference role)

o set (refers to the set of all simple domain store elements
associated with the inference role)

O @D
set

simple

Figure 2. Role mapping types

The FE;Claim representation of role mappings and the as-
sociated role operations is:

InputRole

OutputRole simple/set,

role_mapping (]nference,

noretrieve/retrieve/delete
nostore/store ’

Note that a “simple” role operation involves a single®do-
main store element of the form:

stmple
domain_store set
list

concept C

relatton ' R Instance

From the conceptual point of view, inferences are primitive
problem solving actions and their internal structure as well as
their functioning need not be further detailed. However, if we
are aiming at an operational system, the knowledge engineer
would have to provide the code of the inference bodies in order
to be able to execute the model.

For reasons of simplicity (and also since E,Claim itself is
implemented in Prolog), inference bodies are written in Prolog
according to the following parameter passing convention:

inference_name ([input_role_i = Value_i, ...],
[output_role_j = Value_j, ...]) :-
prolog_code.

9 irrespective of the domain link type, which can be: simple, set or

list.

Therefore, for each inference, the user will have to write a
(set of) clause(s) like above. The heads of such clauses have
two arguments representing the lists of input and output role
bindings. A role binding is a term of the form role name =
RoleValue (RoleValue can be a variable or a (partially) in-
stantiated Prolog term). The order of the role bindings in the
binding lists is irrelevant.

An inference body can contain calls to other inferences or
tasks, but this is not recommended as a good modelling ap-
proach (since inferences should be thought of as primitive
executable objects).

In E;Claim, inferences are executed using the following
primitive:

exec_inference (inference_name,
[input_role_i = InputValue_i, ...],

[output_role_j = OutputValue_j, ...1).

The following operations are performed in exec_inference:

e unify the input arguments of the body with those of the
call

¢ perform domain operations for the input roles (noretrieve,
retrieve, delete)

e execute the inference body

e unify the output arguments of the body with those of the
call

o perform domain operations for the output roles (nostore,
store).

All the above steps of exec_inference are backtrackable. As
already mentioned, backtracking to a domain operation may
involve domain level knowledge revision too.

5 The task level

The task level embodies the control knowledge of a model.
Tasks do not perform domain operations since they are viewed
as composite executable objects (only the primitive executable
objects, i.e. the inferences, are allowed to perform domain op-
erations).

Since no domain operations are associated to task roles,
tasks are, from an operational point of view, like inferences
with “noretrieve” input roles and “nostore” output roles.

One and the same role can be an inference role and a task
role at the same time. (For example, the input role of a com-
posite task can also be the input role of a component inference
or subtask. The actual domain operations are performed when
the inference is executed.)

Parameter passing in tasks is done explicitly in the call of
the task. From the programmer’s point of view, task bodies
have the same syntax as inference bodies:

task_name ([input_role_i = InputValue_i, ...],
[output_role_i = OutputValue_j, ...]) :-
prolog_code.

Task bodies can, of course, contain calls to other inferences
and subtasks.
Executing a task with

exec_task (task_name,
[input_role_i = InputValue_i, ...],
[output_role_j = OutputValue_j, ...]1)

amounts to

e unifying the input arguments of the body with those of the
call

e executing the body

e unifying the output arguments of the body with those of
the call.

All the above execution steps of exec_task are backtrack-
able.

Figure 3 depicts the basic E;Claim architecture viewed
from a functional viewpoint.

1]

exec_task exec_tn ference
I
retrieve t domain_operation
delete store -
. D |
& assert_and
as delete_ind

DL

The E;Claim architecture from a functional
viewpoint

Figure 3.

6 A simple example

A very simple example of a resource allocation problem will
be used to illustrate the facilities of £y Claim.

Consider the following allocation problem. In a university
department there is a set of classes to be taught by a set of
teachers. Classes can be either courses or seminars (but not
both), while teachers are either professors or assistants (but
not both). Let us further assume that assistants are allowed
to teach only seminars and that the list of classes familiar to
(known by) the various teachers is also given.

Of course, a teacher can teach a given class only if he knows
it. Also, we require that each class should be taught by a
teacher and that a teacher cannot teach more than one class
(of course, there may be teachers that don’t teach any class
at all).

The goal of the problem is to find an assignment of teach-
ers (resources) to classes (requests) such that all the above
constraints are verified.

The most straightforward conceptualisation of this problem
involves defining the following concepts:

defconcept(teacher, or(prof, assistant)).
defprimeconcept (prof, teacher).

defprimeconcept (assistant, all(teaches, seminar)).
disjoint ([prof, assistant]).

defconcept(class, or(course, seminar)).
defprimeconcept (course, class).

defprimeconcept (seminar, class).

disjoint ([course, seminar]).
defprimerole (knows) .
defprimerole (teaches).

The relations teaches and knows link a teacher with the
course he teaches or knows respectively.

Given the relation krnows, one must find the relation teaches
subject to all the problem constraints. Some of these con-
straints are easily expressible in the description logic (like the
ones presented above). Other constraints may not be express-
ible in the DL and we may have to take them into account
at the inference level. For instance, the constraint mentioning
that “a teacher can teach a given class only if be knows it”
cannot be represented in the DL unless the particular DL we
are using allows the famous role-value map constructor:

equal (subset (teaches, knows), top).

However, since role-value maps (together with role compo-
sition and concept conjunction) induce the undecidability of
the DL inference services [17], they are usually not provided
in implemented DL systems with complete algorithms. There-
fore, we will have to encode this constraint at the higher levels
of the model (inference and/or task level).

On the other hand, the constraints that each class should
be taught by a teacher and that a teacher cannot teach more
than one class could easily be represented in existing DLs as:

cluss C exists(inv(teaches),top)

teacher C atmost(1,teaches).

In fact, if all the problem constraints could be represented
in the description logic, we could use the DL inference ser-
vices to solve our problem without additional support from
the inference or task level (DL inference services are usually
reducible to the knowledge base consistency test, which typ-
ically works by constructing models of the KB. The model
constructed while proving the KB consistency can then be
used to extract the solution of the problem).

However, not all constraints are expressible in a given DL,
so that the additional levels are really necessary. Also, we may
wish to exert a tighter control on the problem solving process
and thus inference and task levels are again needed (relying
entirely on the description logic inference services may turn
out to be too expensive from a computational point of view).

Last, if we are trying to develop reusable models, hav-
ing separate domain, inference and task levels turns out to
be again very useful. For instance, stripping off the domain
level from our simple allocation example leads to a reusable
problem-solving model for general resource allocation prob-
lems (teachers are abstracted as resources, while classes are
viewed as requests). We could also reuse the domain model in
a different problem involving teachers and classes.

After having completely described the domain level of our
simple model, we proceed to the construction of the inference
level. An extremely simple non-deterministic approach will be
followed.

Assume that a partial assignment (of the teaches relation)
has been constructed up to this point and that we are cur-
rently attempting to extend this partial assignment with a
new tuple for teaches chosen from the tuples of knows and
linking a class that has not already been assigned and a

teacher who is still free (teaches no other class). The cor-
responding inference structure is depicted in figure 4. Note
that we have used generic (abstract) names for the inference
roles denoting teachers, classes and the relations teaches and
knows. Classes are regarded as requests, whereas teachers are
the resources to be allocated to these requests. The tuples of
teaches are thought of as assignments, whereas the tuples of
knows are just candidate_assignments.

~

HOHNS

ahzee_reuzt

Figure 4. The non-deterministic inference structure for the

“teachers” problem

The inference get_request chooses a request that has
not been assigned yet. This chosen_request is passed on to
assign_resource, which tries to retrieve a candidate_assign-—
ment for this request. If it succeeds, the assignment is stored
in the domain level. The whole process is repeated (at the
task level) until there are no more unassigned requests (case
in which it terminates with success) or until a failure occurs
(case in which the system automatically backtracks to a pre-
vious state). Backtracking involves not only the inference and
task levels, but also the domain level since the DL has to be
restored to its previous state (before the call).

Note that inference and task bodies are extremely simple
since we are heavily relying on the automatic domain op-
erations performed by inferences. We are also relying on the
powerful description logic inference mechanisms (mainly when
doing domain store retrieval but also when checking for global
consistency after a solution has been found).

Note that the problem-solving process involves computa-
tions (deduction) at two different levels:

e at the domain level (DL deduction)
e at the inference and task levels (execution of inferences and
tasks).

This observation shows that not only the description of the
problem, but also the problem-solving process itself is dis-
tributed at different levels. We feel that this separation of
computations (performed while solving the problem) is ex-
tremely useful and natural, leading to a higher reusability of
the models. For instance, a change in the domain model does
not require modifications at the inference or task levels. Let
us illustrate this with an example.

Consider a problem instance in which there are only two
teachers (p; and pz) and two classes (a course ¢; and another
class c2):

assert_domain_store(simple, concept, teacher, pl).
assert_domain_store(simple, concept, teacher, p2).
assert_domain_store(simple, concept, course, cl).
assert_domain_store(simple, concept, class, c2).

assert_domain_store(simple, relation, knows, [pl,cl]).
assert_domain_store(simple, relation, knows, [pl,c2]).
assert_domain_store(simple, relation, knows, [p2,cl]).
assert_domain_store(simple, relation, knows, [p2,c2]).

If we are not told whether p; or p» are professors or as-
sistants, the system will return two alternative allocations,
namely [(p1,c1), (p2,c2)] and [(p1,¢c2), (p2,c1)].

However, if we now specify that p; is an assistant, only the
second assignment will be retained as a consistent one, since
an assistant (p;) cannot teach a course (cp).

7 Subtleties

7.1 Eager versus lazy inference
mechanisms

As already pointed out, description logics provide non-trivial
domain level inference mechanisms. For reasons of efficiency,
however, these mechanisms can be either

e cager: are performed automatically in certain key situa-
tions, for example instance assertions or queries (ask oper-
ations)

e lazy: are activated only upon explicit invocation, for exam-
ple global consistency check.

Eager deduction mechanisms are usually faster (ask does a
limited amount of theorem proving, but does not check global
consistency), whereas lazy ones are computationally hard and
should be used only when absolutely necessary.

The global KB consistency check is a typical example of a
lazy deduction mechanism. In order to ensure the KB consis-
tency after each assertion, the consistency test should be in-
voked after each such operation (in EgClaim there is an option
that turns these checks on). However, this test is extremely
time expensive and should be avoided whenever possible by
explicitly testing for consistency in the critical points only
(the EyClaim check_consistency option has to be turned

off).

Interaction between domain links and
role mappings

7.2

In the following, we intend to clarify the difference between a
situation (a) in which a role with a domain link of type “set”
has a “simple” role mapping to a certain inference I and a
situation (b) in which a role with a “simple” domain link has
a mapping of type “set” (to a certain inference).

The structure in Figure 5.a collects/asserts a single domain
store element of the form:

domain_store(set, concept, C, [x_1, ...1)

whereas the one in figure 5.b collects/asserts all simple in-
stances of C: [x1,x2,...], with

domain_store(simple, concept, C, x_1i)

for all 1.

Figure 5. Interaction between domain links and role mappings

7.3 Knowledge revision

Domain instances are deleted only if they were explicitly as-
serted and not if they are just deducible from explicitly as-
serted facts.

Consider for example the following concept definition

father = man A dchild: T
and the instance assertions

€ man

child.

peter
(peter, john) €

The above knowledge base entails john € father.

Now consider a role r linked to the domain concept father.
If a role operation of type “delete” is attempted on r, the
instance john € father will be retrieved, but since john €
father was not explicitly asserted, it will not be deleted (the
domain operation succeeds though).

8 Conclusions

The following advantages of the approach presented in this
paper can be mentioned:

e easing the process of knowledge engineering in KBS devel-
opment.

e the meta-level architecture of the system enables the de-
velopment of reusable domain-independent problem solving
models (PSMs) and of application-independent ontologies.

o the possibility of developing domain-independent executable
libraries of PSMs.

e supporting the process of KBS validation by using the in-
ference services offered by the domain-level language:

— semantic consistency checking

— domain level deduction

— automatic concept classification, knowledge structuring
and indexing.

Such inference services did not exist in other KADS oper-
ationalization environments, except maybe Si(ML)? /FML.
However, deduction in a DL is faster than in full first order
logic; on the other hand, expressivity is lower.

e the description logic used at the domain level can be re-
garded as a compromise between expressiveness and effi-
ciency. The readability of DL formulas is also reasonably
high.

o F.Claim provides non-deterministic inference and task lev-
els, which rely on a non-monotonic domain level.

The lack of non-determinism is, in our opinion, an impor-
tant drawback for KBSs. Algorithms in KBSs, as opposed

to traditional software engineering environments, are com-
plex and usually non-deterministic. If only deterministic
structures are allowed, then one has to simulate the non-
determinism (this can be done in many different ways and
can be domain-dependent since it may depend on the do-
main constraints). But the model should be as abstract and
unique as possible, in order to be reusable.

The following main objectives will be pursued in our future
research:

e Demonstrate the usefulness of the knowledge level simula-
tion/execution facilities (offered by Ej;Claim) in KBS de-
velopment.

o Develop real-world knowledge based systems (KBS) appli-
cations using the F;Claim knowledge modelling environ-
ment.

We also plan to improve the implementation of EjClaim
by developing user-friendly animation tools for the simulation
of KADS models as well as by assisting the KBS developer
with context sensitive help facilities (KADS is known to be
a complex methodology, so that providing such help facilities
would be extremely useful).

Facilities for automatic code generation starting from KADS
models will also be provided.

We expect that the feedback obtained while developing ap-
plications will be essential for shaping the final version of
EiClaim.

Knowledge based system (KBS) development is a very com-
plex process. Any tools providing some automatic assistance
in this process would significantly improve its efficiency as well
as the reliability of the end product (the KBS). The present
work tries to take some steps forward in this direction.

Acknowledgements

The research presented in this paper has been partly sup-
ported by the European Community project PEKADS (CP93-
7599). Thanks are due to Doina Tilivea and Stefan Triusan
for developing the graphical user interface of F,Claim and
to Jan Wielemaker for support on using the XPCE environ-
ment. | would also like to thank Ullrich Hustadt and Renate
Schmidt for permitting the use of the Motel terminological
system [11] in this research.

REFERENCES

[1] ABEN M., BALDER J., vAN HARMELEN F. Support for the for-
malization and validation of KADS expertise models. Report
KADS-II/M2/UvA/DM2.6a/1.0, University of Amsterdam,
1994.

[2] BaaDERF., HOLLUNDER B. KRIS: Knowledge Representation
and Inference System — System Description. DFKI TM-90-
03.

[3] BaDea Liviu. A unified architecture for knowledge represen-
tation and reasoning based on terminological logics. Interna-
tional Workshop on Description Logics DL-95, Roma 1995.

[4] BracHMaN R.J., ScuMmoLzE J.G. An Owverview of the KL-
ONE Knowledge Representation System. Cognitive Science 9
(2) 1985.

[5] Bresciani P., FrRaNconI E., TEssARIS S. Implementing and
testing expressive description logics. International Workshop
on Description Logics DL-95, Roma 1995.

(12]
(13]
(14]
15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

BucHHEIT M., DoNINT F.M., SCHAERF A. Decidable Rea-
soning in Terminological Knowledge Representation Systems.
DFKI RR-93-10.

DE GracoMo G., LENZERINI M. What’s in an Aggregate:
Foundations for Description Logics with Tuples and Sets.
Proc. IJCAI-95, pp. 801-807.

FENSEL D., vAN HARMELEN F., A comparison of languages
which operationalize and formalize KADS models of exper-
tise. Report 280, Universitat Karlsruhe, September 1993.
HoLLUNDER B., NUTT W. Subsumption Algorithms for Con-
cept Languages. DFKI RR-90-04.

HoLLUNDER B. Hybrid Inferences in KL-ONE-based Knowl-
edge Representation Systems DFKI Research Report RR-90-
06.

HusTaDT U., NONNENGART A., ScHMIDT R., TiMmMm J. Mo-
tel User Manual. Max Planck Institute Report MPI-1-92-236,
September 1994.

PATEL SCHNEIDER E.A. Term Subsumption in Knowledge Rep-
resentation. Al Magazine, Summer 1990, p. 16.
PATEL-SCHNEIDER P.F. Undecidability of Subsumption in
NIKL. AL 39 (1989), pp. 263-272.

ScHILD KLAus. Undecidability of Subsumption in U. KIT Re-
port Technische Universitat Berlin, October 1988.

ScHILD KLAUS. A correspondence theory for terminological
logics: preliminary report. IJCAI-91.

SCHMIDT-SCHAUSS M., SMoLKa G. Attributive concept de-
scriptions with complements. Artificial Intelligence 48 (1), pp.
1-26, 1991.

SCHMIDT-SCHAUSS M. Subsumption in KL-ONFE s undecid-
able. Proceedings KR-89, pp. 421-431.

SCHREIBER G., WIELINGA B., BREUKER J. KADS: A Prin-
cipled Approach to Knowledge-Based System Development.
Academic Press, 1993.

SCHREIBER G., WIELINGA B., AKKERMANS H., VAN DE
VELDE W., DE Hoog R. CommonKADS. A comprehen-
swe methodology for KBS development. Report KADS-
1I/M1/PP/UvA/70/2.0, University of Amsterdam, 1994.
Sowa J.F. (ED) Principles of Semantic Networks. Morgan
Kaufmann 1991.

WIELINGA B.J., SCHREIBER A.TH., BREUKER J.A. KADS:
A Modeling Approach to Knowledge FEngineering. Knowl-
edge Acquisition 4 (1), special issue “The KADS approach
to knowledge engineering”, also Report KADS II/T1.1, Uni-
versity of Amsterdam, 1992.

WIELINGA B.J. (ED.) Ewpertise Model Definition Document.
Report KADS 1I/M2/UvA/026/5.0, University of Amster-
dam, 1992.

WIELEMAKER J. SWI-Prolog 1.9 Reference Manual. Univer-
sity of Amsterdam, 1994.

WIELEMAKER J.,
ANJEWIERDEN A. Programming in PCE/Prolog. University
of Amsterdam, 1992.

