A Unified Architecture for Knowledge

Representation based on Description Logics

1

Liviu Badea
ATl Research Department
Research Institute for Informatics
8-10 Averescu Blvd., Bucharest, Romania
e-mail: badea@roearn.ici.ro

Abstract. This paper presents a unified architecture for
knowledge representation based on description (terminolog-
ical) logics. The novelty of our approach consists in trying to
use description logics not only for representing the domain
knowledge, but also for describing beliefs, epistemic opera-
tors and actions of intelligent agents in a unitary framework.
For this purpose, we have chosen a decidable terminological
language, called ALC*, whose expressivity is high enough to
be able to represent actions and epistemic operators corre-
sponding to the majority of modal logics of knowledge and
belief.

Additionally, we describe practical inference algorithms for
the language ALC* which lies at the heart of our RegAL?
knowledge representation system. The algorithms are sound
and complete and can be used directly for deciding the valid-
ity and satisfiability of formulas in the propositional dynamic
logic (PDL) by taking advantage of the correspondence be-
tween PDL and certain terminological logics.

1 Description logics

Description logics® (DLs) are descendants of the famous KL.-
ONE language [3] and can be viewed as formalizations of the
frame-based knowledge representation systems.

The relationship between DLs and logic is analogous to the
relationship between structured and unstructured program-
ming languages. Indeed, DLs impose a certain discipline in
the logical structure of a formula (concept) in the very same
way in which the structured programming paradigm imposes
a discipline in the control structure of a program. Although
they somehow restrict the expressivity of the description lan-
guage, DLs are most of the time preferable to general logic
because of their increased understandability and usability in
building practical knowledge bases. Also, as opposed to gen-
eral logic, certain DLs may possess decidable inference prob-
lems while retaining a fairly high expressivity which enables
them to represent complex ontologies.

I This research was partially supported by the European Commu-
nity project " KADS (CP-93-7599).

2 The id(C) - regular closure of the ALC language.

3 Also known as terminological logics, term subsumption languages
or frame-based systems.

© 1996 Liviu Badea

ECAI 96. 12th Furopean Conference on Artificial Intelligence
Edited by W. Wahlster

Published in 1996 by John Wiley & Sons, Ltd.

Practically all the terminological knowledge representation
systems built before 1990 (such as KL-ONE, KRYPTON,
LOOM, BACK) used éncomplete inference algorithms, the
problem of finding complete algorithms being non-trivial for
most of the interesting languages. This pragmatic approach of
using incomplete inference algorithms has certain important
drawbacks, the main one being the contradiction between the
theoretically formalized semantics of the language (which is
clear and easily communicable to a user) and the procedu-
ral semantics of the incomplete inference engine, the multiple
cases of incompleteness being usually very difficult to explain
to a user who is not supposed to know all the details of the
implementation. This is why efforts have been invested in de-
veloping RegAL [2], which is based on complete inference
algorithms.

Systems based on DLs are hybrid systems which separate
the described knowledge in two categories: terminological and
assertional knowledge. The terminological knowledge is generic
and refers to classes of objects and their relationships, while
the assertional knowledge describes particular instances (in-
dividuals).

There are two kinds of terminological knowledge, namely
concepts and roles. Concepts are unary predicates interpreted
as sets of individuals, while roles represent binary predicates
interpreted as binary relations between individuals.

The terminological description language usually provides a
variety of concept and role constructors, including the boolean
operators (conjunction M, disjunction U, and negation —).
Value- (VR: (), existential- (3R: C') and number restrictions
(€<n R, =n R, >n R) as well as enumerations of instances
({z1,...,2n}) are some of the most important concept con-
structors. We could also mention the following role construc-
tors: 1d(C) (the restriction of the identity role to the concept
C), R (role inverse), R|C (range restriction), R; o Rz (role
composition) and R* (reflexive-transitive closure).

The terminological knowledge base (also called TBox) con-
sists of concept and role definitions (which can be necessary,
or necessary and sufficient definitions, or even general con-
cept inclusions of the form ¢y C C>, with ¢ and (5 general
concept terms). In the following, we shall assume that the ter-
minological axioms are general inclusions, the other concept
definitions being easily reducible to inclusions. In particular,
we shall allow multiple definitions of concepts and termino-

logical cycles.

Following [1, 7], we can reduce the consistency test of some
concept I modulo a given terminology 7T to the “pure” con-
sistency test* of the concept D MYR*: Cr, where R =]_L R,
R; being the role names occurring in 7 and D, while C'y =
Hi(—'A,‘ UB;) for T={A C By,..., A, C Bn}.

The assertional knowledge base (also called ABoz) consists
of assertional axioms, i.e. assertions of instances of concepts
and roles.

The above-mentioned results allow us to concentrate in the
following on the “pure” consistency (satisfiability) test.

2 The terminological language ALC*

The terminological language we are using in our knowledge
representation system RegAL is ALC*. ALC* is the regular
closure of the well-known language ALC of Schmidt-Schauf3
and Smolka [8] extended with the role constructor id(C').

Besides the concept constructors of ALC (boolean opera-
tors plus existential- and value restrictions), ALC* admits the
following role constructors which are interpreted according to
the following semantic rules

(RiUR:)" =R{UR]
(R*)I — U(RI)n

n>0

(RioR:)" =Rl oRy
id(C)" = {(z,)|z € C*}.

In the following, we shall present complete inference algo-
rithms® for the terminological language ALC*. By taking ad-
vantage of the correspondence of ALC* with the propositional
dynamic logic (PDL) of programs [7], we shall be able to ap-
ply our algorithms for deciding the validity and satisfiability
of formulas in PDL too.

2.1 Complete decision algorithms for ALC*

The satisfiability (consistency) of a concept in our termino-
logical language can be tested by using a variant of tableaux
calculus adapted to this specific context. Starting from a for-
mula which implicitly asserts the satisfiability of the given
concept, the calculus tries to construct a model of the respec-
tive formula. In doing so, it may discover obvious contradic-
tions (clashes) and report the inconsistency of the original
formula, or it may come up with a complete clash-free model,
thus proving the satisfiability of the formula. This method is
directly applicable only if the language possesses the finite
model property (which is fortunately the case with ALC*),
since it is obviously impossible to explicitly construct infinite
models in a finite amount of time. However, it can also be ap-
plied to languages lacking the finite model property whenever
finite pseudo-models can be constructed instead of models.
Such pseudo-models can then be unwound into potentially
infinite models.

The tableaux calculus combines two different processes.
The first is analogous to a refutation theorem prover which
tries to discover contradictions, while the second concentrates

4 modulo the empty terminology

5 The validity and satisfiability problems in ALC* are known to be
decidable (more precisely, EXPTIME—complete).

For reasons of brevity, in presenting the algorithm we shall confine

ourselves to the terminological component of the language, i.e. we

shall not deal with ABox individuals, nor with enumerations.

Knowledge Representation

289

on building models. In [5] a variant of the tableaux calculus
(called rule-based calculus operating on constraints) is used
for obtaining complete decision procedures for the satisfia-
bility problem in the languages ranging between ALC and
ALCFNR. On the other hand, Franz Baader [1] succeeds in
obtaining a practical decision algorithm for the regular clo-
sure ALCr.q of ALC. As far as we know, no practical decision
algorithms for languages more expressive than ALC,.y are
known.

Adding the role constructor id(C') to the language ALC ey
increases the expressivity but introduces substantial compli-
cations in the inference algorithms. These complications are
mainly due to the fact that existential restrictions are no
longer separable in the language ALC*.

The complete satisfiability checking algorithm is a conse-
quence of the reduction and cycle-characterization theorems
presented below. The idea of the algorithm consists in reduc-
ing the satisfiability of a given concept to the satisfiability of
several simpler concepts. This reduction process can be alter-
natively viewed as a process of model construction. In order
to ensure the termination of the algorithm, we have to check
for the presence of cycles at each reduction step. In case a
cycle has been detected, the cycle-characterization theorem is
used to determine its nature. As in the case of ALCrcq, only
the good cycles lead to a model, the bad cycles being merely
shorthands for infinite reduction chains.

The satisfiability testing algorithm, presented below, in-
volves a preprocessing step in which the following computa-
tions are performed:

1) The concept C to be tested is brought to the negation nor-
mal form (nnf). The main difference viz. ALC, .y consists
in having to consider the concepts I within d([) roles too.
This has to be done depending on the context in which the
role id(l) appears (i.e. within an V or a 3 restriction) in
order to facilitate the extraction of the proper conjuncts
of C. More precisely, if id(I) appears in an 3 restriction,
then rnf3(id(C)) = id(nnf(C)), while if it occurs in an V
restriction, then rnfv(id(C)) = id(—nnf(=C)).

2) Since comparisons between role expressions R occurring in
C are quite frequent (especially when testing the existence
of cycles), it seems to be a good idea to bring the roles R
to a canonical form. This can be done by constructing for
each role R the corresponding deterministic finite automa-
ton DFA and by minimizing the disjoint union of these
automata. The initial states of the resulting minimal de-
terministic finite automaton mDFA represent the canonical
forms of the roles occurring in C.

In the following, we shall make no distinction between a
role, its corresponding state in the mDFA and the language
accepted starting from this state. Also, the following substitu-
tions are performed for all value- and existential restrictions
in which € € R (or, equivalently, the state of the mDFA cor-
responding to R is final):

VR:Ca
dR: Ce

— CanV(R\{e}):Ca
— CeU3(R\ {e}): Ce.
The actual satisfiability testing algorithm extracts a con-

junct of the given concept at a time, checks for possible cycles
and clashes, then removes the separable existential restrictions

Liviu Badea

and subsequently tries to determine the satisfiability of the re-
maining nonseparable conjunct.

satis fiable(C)
C' « nnf(C)
uDFA+ |

R occurs in C/

mDFA + minimize(uDFA)
C" « roles_to_mStates(C")
sat(C",[])

a

role_to_DF A(R)

sat(C, L)
Conj « conjunct(C)
sat_conjunct(Cony, L)
O

sat_conjunct(Cony, L)

if cycle(Cony, L, GoodBad) then
if GoodBad = good then succeed
else fail

else
Conj « proper_conjunct(Conyj)
assign a new unique label Ne to all

Jro-tabel Re: Cle restrictions

// Cong = 1‘[lofin 1‘[IVeRe;: Ce; M HVRak Cay,
if H C; contams a clash (i.e. Ciy = —|C,2) then
fazl

else
// solve the separable 3 restrictions
// and collect the nonseparable ones

NS_FE + sat_separable_ezists(]] IRe;: Ce;
3
M J]VRax: Cax, [Mnode(Conyg)|L])

k
// solve the nonseparable 3 restrictions
sat-nonseparable_exists(H C;,MNS_E

[¥Rax: Cax, [M_node(Cony)|L))
k

]
]
]

sat_separable_ emsts HElRe] Ce; M HVRak Cay, L)

— NS_E // con]unct of nonsepamble 3 restrictions
NS E+« T
forall 3Re: Ce in [ARe;: Ce;

J
sat_exists(ﬂmz Cenm H VRay: Cax, L)

k
or // nondeterministic choice
NS_E < JRe:CeM NS_E
O

return NS_E
]

sat_exists(ga, L)
sat_exists_solved(C3, L)
or // nondeterministic choice

sat_ewists_postponed(C3, L)
O

Knowledge Representation 290

sat_exists_solved(ga, L)
// C3=3Re:Cen vak: Cay

3

if there exists an R € Re such that R # i1d(-) then

Ca' '+ [] Carml [] VY(R™'Rax\{e}):Ca
RERay, R=1Rap\{e}#0

// solve the 3 restriction
sat(Cen Ca', L)

else fail

O

sat_ewists_postponed(C3, L)
// C3=3Y°Re:Cen HVEk: Cay

2
let R™' Re be the target state of the transition
Re 2% R™'Re with R # id(-)
Ca' « [] Cartl [] Y(R™'Rax\{e}):Ca
RERay, R=1Rap\{e}#0
// postpone the 3 restriction
sat(Ca’ M3IVE(RT Re\ {e}): Ce, L)
O

sat_nonseparable_ emsts HC MNS_EN HVRak Cak,L)
C HC HHVRak Cak

forall 3V Re: Ce in NS_E
if id(/) € Re then
C+ (Inceync
else fail
or // nondeterministic choice
if id(I)"'Re \ {e} # 0 then
C « [IM3Y(id(I)~"Re \ {e}): Ce
else fail
]
sat(C, L)

|nc

[}

Definition 1 A restriction dRe;: Ce; is called separable
w.r.t. the proper conjunct® Cn = Hl ;N H] dRe;: Ce; M
Hk YRay: Cay tff the conceptgaj :_HEJ : CeJI_IHk YRay: Cay
18 satisfiable. The proper conjunct C'r itself is called nonsep-
arable iff none of its ARe;: Ce; restrictions is separable.

There are two possibilities of proving the satisfiability of the
concept C'3;, namely by solving the existential restriction, or
by postponing it.

Theorem 2 (reduction of the separable existential restric-
tions) The concept 63j above 1s satisfiable iff one of the fol-
lowing two conditions is met:

1) there exists a role name R € E] such that Ceoryea(R) =
Ce; MOv(R) is satisfiable, or

2) there exists a role name R s.t. R™"Re; \ {e} # 0 and
Cpostponea(R) = A(R™' Re; \ {e}): Ce; M Cy(R) is satisfiable,

where

H Cay M H V(R_lRak\{e}):Cak.

RERay, R=1Rap\{e}#0

6 In ALC*, it is important to distinguish between simple and proper
conjuncts. The simple conjuncts are the ones obtained by ignor-
ing possible 7d(I) roles that could occur in the given concept C.
The proper conjuncts can be obtained from the simple ones by
taking into account the implicit disjunctions induced by possi-
ble ¢d(I) transitions of roles Ra occurring in value restrictions

VRa:Ca. For instance, Vid(I):C = -IUC.

Liviu Badea

In a similar way, the (nonseparable) existential restrictions
from a nonseparable conjunct can be solved or postponed
w.r.t. id(I) transitions, but they cannot be separated because
of possible interactions between the concepts 1.

Theorem 3 (reduction of the nonseparable conjuncts)
A nonseparable proper conjunct Cry is satisfiable iff at least
one of the concepts H C,‘I_IH redid(I)(ElRe] : Ce])I_IH VYRay: Cay
7 J k

is satisfiable, where red;q1)(ARe;: Ce;) =

{ IMCe; if id(I) € Re;
IN3(id(1)" Rej \ {e}) : Ce; ifid(1)" Re; \ {e} #0

is the reduction of the restriction IRe;: Ce; w.r.t. the transi-

tion id(I).

In order to be able to determine whether a given existential
restriction has been obtained by postponing or by solving an-
other existential restriction involved in a cycle, we shall attach
a unique label N to each existential restriction 3V Re: Ce. All
existential restrictions are initially unlabeled. An unlabeled
restriction 3"°-'***! Re: C'e receives a new unique label N; only
when it reaches the “top level” of a conjunct:”

Cn =[] cin]]3" Rej: Ce; n] ¥Rax: Cay.
i j K

When an existential restriction is postponed, its label is
conserved and can be used to track an uninterrupted chain
of postponings. Such a chain cannot correspond to a model
unless at least one of the existential restrictions in the chain
is eventually solved.

In the following, we shall see how the labels can be used
to determine the nature of cycles. Let Cr and gln be the two
concepts involved in a cycle. Cr and 6{1 are equal, except
maybe the labels N; and N, of the existential restrictions
(4 =1,...,n). Such a cycle will be represented by the label-
N1 Ny ... N,
N N, ... N},
of this table being related to equal existential restrictions
IViRe: Ce = IViRe: Ce from Cr and 6{1 respectively. Be-
cause J restrictions get unique labels when they reach the top
level of a conjunct, we have N; # N, and N/ # N]' for 1 # 3.
The following theorem can be used in determining the nature
of a cycle.

correspondence table , each column

Theorem 4 (cycle characterization)

A cycle represented by the label correspondence table above
is bad (i.e. it does not induce a model) iff the label corre-
spondence table contains a cyclic permutation, i.e. there ex-
ists a subset of indices {j1, j2,...,Jx} C {1,...,n} such that
N;, =N, , N;,, =N, N =N, , N;, =N|.

J27 VERE Jk—1 Ik’
3 Representing epistemic operators in
description logics

Since we are aiming at a unified architecture for knowledge
representation based on description logics, we shall show that

7 This happens in sat_conjunct after extracting a proper conjunct
from a simple one.

Knowledge Representation

291

Modal logic of .

knowledie L Axioms £(R)
K. K R
T. KT RuU
S4. KT4 R*
S5. KT45 (RUR™1)*
B. KTB RuUiduR™?T

Table 1. The accessibility relation £(R) in the modal logics of

knowledge

DLs are powerful enough to represent epistemic operators cor-
responding to the majority of modal logics of knowledge and
belief.

In modal logic, an agent can imagine a set of possible worlds
linked with the real world by the accessibility relation. The
facts p known by the agent are facts which are true in all
possible worlds.

Modal formulas are constructed by using the usual logical
connectives together with the modal operators O (necessity)
and < (possibility). The necessity modal operator O will be
interpreted in the following as an epistemic operator, the for-

mula O;p being understood as “the agent ¢ knows the fact
99

p.

Because of the fact that there is no unique interpretation of
the modal notions of “necessity”, “possibility”, “knowledge”,
“belief” etc., there exists a large variety of modal systems
which can be distinguished by the properties of the accessi-
bility relation. Imposing, for instance, the reflexivity of the
accessibility relation p in the modal system T is equivalent to
requiring the truth of knowledge, while imposing the seriality
of p leads to the consistency of knowledge.

The multi-modal logics of knowledge K, T, S4, S5, B can
be embedded in a description logic by using the following
satisfiability preserving translations of the modal (epistemic)
operators:

Oip > VL(R:):p'
Oip — Elﬁ(R,‘):p/.

In this way, problems formulated in terms of modal op-
erators can be reduced to problems in a DL which can be
solved using the inference algorithms from the preceding sec-
tions. Here £ denotes the particular modal system, while R;
is an arbitrary role name representing the agent i. The role
L(R;) stands for the accessibility relation and possesses all the
properties this relation should have in the system £. Thus, we
could read the formula VC(R,‘):p' as: “the agent ¢ knows the
fact p’ w.r.t. the modal system £ (L gives us here the type
of knowledge).

Table 1 presents the expression of £(R) for some of the
most important modal logics of knowledge. Note that all these
formulas for L(R;) are quite intuitive if we interpret the role
R; as a one-step access to the state of knowledge of the agent
1. Consider for instance the case of the modal logic S4 = K74,
in which the axiom 7' asserts the truth of knowledge, while the
axiom 4 requires the property of positive introspection. In this
case, the expression of the accessibility relation S4(R;) = R}
shows that the agent ¢ can access knowledge about knowledge

Liviu Badea

(during positive introspection) in multiple accesses using the
one-step access action R;.

In the weakened versions OL and OLT of the systems £
above we have to replace the axioms of reflexivity 7" and sym-
metry B with the weaker versions corresponding to almost
reflexivity O(Op — p) and almost symmetry O(COp — p)
respectively. Such logics, in which the truth of knowledge is
replaced by the requirement that beliefs should be believed
to be true, are appropriate as modal logics of belief. The ex-
pression of the accessibility relation in these logics takes the
form

OLT(R) = OL(R;) = L(R:) o4d(qs),

where ¢; are atomic formulas. In the case of the “deontic” sys-
tems OLT, in which the beliefs are required to be consistent,
we also have to assert the facts 3OLT (R;): T (or, equivalently,
AL(R:): qi).

The common knowledge and common belief operators take
the form € = [(]], £(R:))*] and D = [(][, OL(R:))*] respec-
tively.

The main advantage of our unifying approach is that the
various types of knowledge corresponding to the aforemen-
tioned modal systems can be amalgamated in a single sys-
tem. Not only is it possible to describe in Reg AL the knowl-
edge/beliefs of several agents, but the different agents could
have different epistemic operators with distinct modal prop-
erties so that we could study, for example, the interaction
between an agent whose knowledge is necessarily true and an-
other agent whose beliefs are just consistent and believed to
be true, but not necessarily true in reality. One could even
have more than one epistemic operator attached to the same
agent in order to distinguish its beliefs from its knowledge.
Of course, in Reg AL epistemic operators can be nested in
an unrestricted fashion and they could even mention actions
and plans. Also, the actions of some agent could modify the
knowledge or beliefs of another agent so that it becomes pos-
sible to study the communication between agents in a unified
framework.

Our method of integrating epistemic operators in a DL is
much simpler than other approaches which, on one hand, can
usually deal with only one single type of knowledge at a time
and, on the other, had to develop special purpose algorithms
for treating the epistemic operators (since the underlying DL
has usually a too low expressivity to be able to express epis-
temic operators directly).

4 Concluding remarks

This paper tries to present a unified approach to the domain
of knowledge representation from the viewpoint of descrip-
tion logics. We have shown that DLs are powerful enough to
represent not only the domain knowledge in a particular ap-
plication, but also the epistemic operators actions and plans
[2] of a set of interacting agents. Because of our unifying ap-
proach, all these types of knowledge can be combined in an
unrestricted fashion.

In order to support the reasoning involved, we have chosen
a decidable terminological language, ALC*, for which we have
developed “practical” inference algorithms. It should not be
surprising that these algorithms are quite complex, because
the underlying language has a high expressivity.

Knowledge Representation 292

Note that although several different algorithms for reason-
ing in PDL-like logics have been put forward (for example [9]),
we argue that most of them, although theoretically optimal,
are not good enough if we are aiming at an operational system.
While such a system should not have a higher computational
complexity than the theoretical worst-case complexity of the
decision problem, it should also behave much better in the av-
erage (simpler) cases (our “practical” algorithm behaves well
in such average cases). But this is not the case with most of
the existing algorithms which start by constructing a struc-
ture with an exponential number of states by creating all the
subsets of the Fischer-Ladner closure of the input formula.
(An exception is the paper [6] which uses a “bottom-up” ap-
proach, constructing only as much of the model of the input
formula as is needed).

Although developed independently, our algorithm is sim-
ilar in spirit, but not in realization, to the above-mentioned
algorithm of Pratt. One of the improvements of the present al-
gorithm consists in precomputing the canonical forms of roles
occurring in the tested formula (by constructing a minimal
DFA, like in [1]) which simplifies the cycle testing that has to
be done for ensuring termination.

Also, the fact that the above-mentioned algorithm expresses
formula conjunctions by means of tests p A ¢ = (p?)q, leads
to inefficient reasoning at the level of the boolean connectors.
Our method allows, on the other hand, a more refined infer-
ence control, at least at the level of the boolean operators.

The resulting system, called RegAL, is implemented in
ProLOG and will be used in a bigger knowledge-based sys-
tems development environment.

Note that the language CATS [4] is a similar very expres-
sive PDL-like description logic. However, while the paper [4]
uses a translation approach that relies on existing decision
algorithms for PDL, our approach stresses the importance of
improving and extending the existing algorithms for PDL in
order to obtain better average-case performances.

REFERENCES

[1] BaADER F. Augmenting concept languages by the transitive
closure: An alternative to terminological cycles. IJCAI-91,
Pp. 446-451.

[2] BaDEA Liviu. A unitary theory and architecture for knowl-
edge representation and reasoning (in Romanian) Research
Report A11-2, ICI, 1995.

[3] BracHMmaN R.J., ScuMoLzE J.G. An Owverview of the KL-
ONE Knowledge Representation System. Cognitive Science 9
(2) 1985,

[4] DE Giacomo G., LENZERINI M. What’s in an Aggregate:
Foundations for Description Logics with Tuples and Sets.
IJCAT-95, pp. 801-807.

[5] HoLLUNDER B., NUTT W., SCHMIDT-SCHAUSS M. Subsump-
tion Algorithms for Concept Description Languages. ECAI-
90, pp. 384-353, Pitman, 1990.

[6] PrATT V.R. A near-optimal method of reasoning about ac-
tion. J. Comp. System Sci. 20 (2) (1980), pp. 231-254.

[7] ScHiLD KLaus. A correspondence theory for terminological
logics: preliminary report. IJCAI-91, pp. 466-471.

[8] ScHMIDT-ScHAUss M., SMoLKA G. Attributive concept de-
scriptions with complements. Al Jour. 48 (1), pp. 1-26, 1991.

[9] Varpi M.Y., WoLPER P. Automata-theoretic techniques for
modal logics of programs. J. Comp. System Sci. 32 (1986), pp.
183-221.

Liviu Badea

