Planning in Description Logics:
Deduction versus Satisfiability Testing

Liviu Badea
Al Research Lab
Research Institute for Informatics
8-10 Averescu Blvd., Bucharest, Romania
e-mail: badea@ici.ro

Abstract.

Description Logics (DLs) are formalisms for taxonomic rea-
soning about structured knowledge. Adding the transitive clo-
sure of roles to DLs also enables them to represent and rea-
son about actions and plans. The present paper explores sev-
eral essentially different encodings of planning in Descrip-
tion Logics. We argue that DLs represent an ideal frame-
work for analysing and comparing these approaches. Thus, we
have identified two essentially different deductive encodings (a
“causal” and a “symmetric” one), as well as a satisfiability-
based approach.

While the causal encoding is more appropriate for reason-
ing about precondition-triggered causal events, the symmetric
encoding is more amenable to reasoning about possible out-
comes of courses of actions without actually executing them
(while allowing both progression and regression).

In the deductive approaches, the existence of a plan corre-
sponds to an inconsistency proof rather than to a model of
some formula. Viewing planning as satisfiability testing ad-
dresses this problem by reducing planning to model construc-
tion.

1 Introduction

Description Logics (DLs) are formalisms for taxonomic rea-
soning about structured knowledge. Like their predecessors
(semantic networks and frame languages), DLs have been
used mainly for representing and reasoning about the domain
knowledge of a given problem, usually in the framework of a
hybrid architecture.

Description Logics with the transitive closure of roles [2, 12]
have also been proposed as a unifying formalism for various
class-based representation languages as well as for represent-
ing tense, epistemic operators, actions and plans [7, 1, 3].

Some of these approaches rely on Schild’s correspondence
[12] between expressive description logics with the transitive
closure of roles and propositional dynamic logic (PDL). Given
that PDL has been conceived as a formal approach to reason-
ing about actions and dynamically evolving systems (such as
programs), it may be surprising that so little research has
been carried out towards representing planning in description
logics.!

1 We are considering description logics rather than plain PDL for

© 1998 Liviu Badea

ECAI 98. 13th Furopean Conference on Artificial Intelligence
Edited by Henri Prade

Published in 1998 by John Wiley & Sons, Ltd.

However, representing and reasoning about actions and plan-
ning in DLs is very important for modeling dynamically evolv-
ing DL knowledge bases at the conceptual level (as opposed
to using an ordinary DL in a hybrid architecture, where one is
not able to reason about actions :n the DL, which is therefore
incomplete).

The main goal of this paper is to present an in-depth anal-
ysis of the various approaches to encoding actions and plan-
ning in Description Logics. This issue is not entirely straight-
forward, since — contrary to a first impression — there are
several essentially different ways of encoding actions and plan-
ning problems in DLs. For example, we can encode planning
either as deduction or as satisfiability testing. Viewed as a
deduction problem, we have identified two essentially differ-
ent encodings of planning: a “causal” and a “symmetrical”
one. These deductive approaches could also be used together
in a realistic setting in which causal external events (even
non-deterministic ones) as well as actions under the control
of intelligent agents coexist.

2 The ALC* Description Logic

In the following, we consider the smallest description logic
able to express actions and conditional plans, namely the
regular closure ALC* of Schmidt-Schaul and Smolka’s ALC
language [13] extended with identities id(C'). Compared with
other description logics, ALC* is quite expressive, since it al-
lows the internalization of general (possibly cyclic) concept
definitions by means of the transitive closure of roles.

The following concept and role constructors are available

in ALC*:
Cu=CN|T|L|CiAC | C VT | =C | (R)C | [RIC

Ru=RN |id(C)| R™ | RiVRy | RioRy | R

where CN, RN are concept and role names respectively, (R)C
are existential restrictions (usually written as 3R.C'), while

encoding actions for two important reasons. First, description
logics may provide additional constructs useful for integrating a
theory of action in a more extensive KR framework. Second, in
DLs it is possible to impose constraints on specific state instances
(using assertional axioms). This is not possible in PDL.

[R]C are value restrictions (written also as YR.C'). Role union
(R1 V R2), composition (R; o R2) and reflexive-transitive clo-
sure (R"*) allow for regular role expressions, whereas the iden-
tity role construct id(C') is useful for representing conditional
plans. Role inverses (R™) are needed for goal regression.

Recall that the transitive closure of roles is not expressible
in first-order logic (it requires at least fixpoint logics). How-
ever it is essential not only for encoding general terminological
axioms, but also for our encodings of planning in ALC*.

In order to represent the symmetric encoding, we will need
a more expressive DL, namely one that provides explicit fix-
point constructors. The ALC* language [11, 5] is strictly more
expressive than ALC* and provides the following additional
concept constructors:

Cu=uX.C|vXC| X

where X is a “fixpoint variable” which can occur only in
the scope of the least/greatest fixpoint constructors uX.C
and vX.C respectively. And although ALC* admits no role
constructors (besides role inverses), the ALC* role construc-
tors (occurring in existential or value restrictions) can be ex-
pressed by means of fixpoints.

The terminological knowledge base consists of general con-
cept implications of the form C; — (5, as well as validity
axioms C (expressing the validity of the concept term C').

The assertional knowledge base consists of assertional ax-

ioms of the form
5:C (concept instance assertions)

(s,s'): R (role tuple assertions).

An interpretation satisfying the terminological and asser-
tional axioms of a knowledge base (KB) is called a model of
the KB. A KB is called consistent iff it admits a model and
inconsistent otherwise. A concept C is called satisfiable w.r.t.
a given KB iff it admits a non-void extension C7 in a model Z
of the KB. C'is valid in a KB whenever C = T7Z in all models
7 of the KB. C is valid iff its negation —C is unsatisfiable.

Testing satisfiability (and therefore also validity) in ALC*
as well as ALC* is decidable, more precisely EXPTIME-com-
plete [8, 5].

3 Encoding actions and planning in
Description Logics

As we have mentioned in the introduction, Description Log-
ics with the transitive closure of roles like ALC* can be used
not only for representing taxonomic domain knowledge, but
also for describing actions and plans. This can be achieved by
regarding a DL role A as an action which transforms states S
from (the extension of) the role’s domain into states S’ from
(the extension of) its range: (S,5’) € AT. Thus, the value
restriction [A]C can be interpreted as the necessary precon-
dition for action A to achieve the effect C.

Conditions (fluents) from our theory of action will be rep-
resented in a DL by concepts, while actions will be encoded as
role names. Of course, (possibly conditional) plans can be rep-
resented as complex role terms, the role constructors Vv, o and
* being interpreted as control structures (nondeterministic
choice, sequence and nondeterministic iteration respectively).
The identity role constructor id(C) can be interpreted as a
“test”, which can be used for expressing the usual structured
control primitives if, while and repeat.

Planning and Scheduling 480

In the following, we will deal with propositional STRIPS
actions A described in terms of the following three condition
sets (containing only non-negated fluents):

[preconditions Pre(A) (the conditions necessary for executing A)
[] positive effects Add(A) (the fluents added by A’s execution)
[negative effects DeI(A) (the fluents deleted/falsified by A’s execu-

tion).

The following relationships between the above condition-
sets are assumed: Pre(A)NAdd(A) = 0 and Del(A) C Pre(A).

For example, the simple blocks-world action A = move X_Y_Z
(which moves the block X from Y onto Z) admits the following
STRIPS description: Pre (4) = {onX.Y, clear X, clear Z},
Add(A) = {onX_Z, clearY}, Del(A) = {onX.Y, clear Z}.

As we have already mentioned, there are several alterna-
tive approaches to encoding and reasoning about actions and
plans in ALC*. The two main categories of approaches are
the deductive and the satisfiability-based ones. We start by
discussing the deductive approaches.

3.1 Deductive planning in Description
Logics

We have identified two essentially different encodings of plan-
ning as deduction: a causal (asymmetrical) one and a sym-
metrical one.

3.1.1

The causal (asymmetric) encoding

The causal encoding amounts to enforcing the existence of an
action execution A whenever the preconditions Pre(A) of A
are verified:

Pre(A) = (A)Add(A)

(where condition sets appearing in logical formulae are in-
terpreted conjunctively).
The semantical interpretation of the above axiom

[Effpep_cavs]

2

holds(Pre(A), S) — 35".do(A, 5, 5") A holds(Add(A), S")

shows that all actions A executable in state S (whose precon-
ditions are satisfied in S) are actually executed in S, leading
to (separate) successor states S'. The causal approach there-
fore encodes the entire search space (with all possible action
executions from a given state) in its models.

Besides the explicit effects of action A, described by axiom
[Eff pep_camsg], it is necessary to describe the persistence of
the conditions (fluents) left unmodified by A. This is achieved
by means of frame axioms of the form®

[Frpopp] € = [A]C
for all C € Conditions — (Del(A) U Add(A)).

Note that since we are in a deductive setting it is not nec-
essary to explicitly mention the deleted effects in the con-
sequent of the above axiom. In other words, a stronger ver-

sion like Pre(A) — (A)(Add(A) A —Del(A)) is not needed

2 We write holds(C, S) instead of S € CT and do(A4, S, S') instead
of (S,8") € AZ in order to emphasize the fact that the interpreta-
tions of DL formulae are essentially situation calculus formulae.

3 Since a given action typically affects only a small number of
conditions, we will have to write O(|A| - |C|) such frame axioms.

Their number can be reduced to O(|C|) by grouping the actions
A, A’ A", ... that leave C' unaffected: C' — [AV A’ v A" v ..]C.

Liviu Badea

as long as the frame axioms do not allow the persistence of
deleted effects. Similarly, a stronger version like Pre(A) —
(AYT A[A)Add(A) is also unnecessary for deductive planning.

A planning problem is usually specified by providing a (pos-
sibly incomplete) initial state described by the concept Initial
(a conjunction of the concept names representing the condi-
tions initially true) and a final (goal) state Final. For exam-
ple, in the Sussman anomaly problem Initial = on.c_a A
on_a_table A on_b_table A clear.c A clearb and Final
= on.ab A onb.c.

The most straight-forward approach to such a problem
would be to reduce it to proving a theorem of the form Initial
— (?Plan)Final involving a meta-variable ?Plan. Unfortu-
nately, most description logic theorem provers do not allow
for role variables (especially those with powerful role con-
structors, like .ALC*), so the simple approach above is not
directly feasible.

If we knew the role term representing the plan Plan =

Ai, 0 A, 0...0A,,, then the validity of the formula

1 tn

I'nitial — (Plan)Final (1)

is equivalent with the validity of the plan.

However, since we do not know Plan, we need to try prov-
ing (1) for all possible action sequences Plan. Unfortunately,
this cannot be done effectively, since there are infinitely many
such action sequences and therefore infinitely many theorems
to try proving. Therefore, we will consider reducing the prob-
lem to proving a single formula containing a disjunction of all
possible action sequences:

Initial — Final V (A1) Final vV (A2)Final V...V

<A1 o A1>Fmal \ <A1 o A2>Fmal V... (2)

Since a disjunction of existential restrictions can be rewrit-
ten as an existential restriction (R1)qV (R2)q = (R V Ra)q,
we can reduce (1) to

[Planprp_cavs] Initial — (Any*>anal

where Any = A1 V Az V...V Ag is the disjunction of all
atomic actions occurring in the problem (the “repertory of
actions”) [3, 6]. Note that the role term Any* plays the role
of the meta-variable ?Plan.

The relationship between (1) and (2) is subtle and requires
some explanations. In general, a proof of (2) does not entail
the existence of a proof of (1) for some Plan (although the
reverse is true) because (2) requires that for each state S
verifying Initial we find a sequence of actions Plan such that
(Plan) Final holds — but Plan need not be the same for all
such states S!

The most straight-forward solution to this problem (pur-
sued for example in [6]*) would be to require complete state
specifications (that do not allow for essentially different states

4 De Giacomo and Lenzerini do not explicitly state that the ini-

tial state should be completely specified. However, their ap-
proach of reducing planning to proving the validity of Initial —
(Any*)Final fails in the case of incompletely specified initial
states due to their allowing actions with negated preconditions.
For example, consider Initial = p, Final = q and an action a with
Pre(a) = {—q}, Add(a) = {q}, Del(a) = {—g}, described by means
of the following axioms: =g — (a)T; (a)T — —g; [alg. Initial is
incompletely specified since the value of g is not mentioned. There-
fore, two possibilities arise: either g is true in Initial (case in which
the empty plan Plan’ = id is the only solution), or =g holds in

Planning and Scheduling 481

S) and to make sure that the axioms constrain the successor
states to be also completely specified. This amounts roughly
to combining the axioms from our deductive (causal and sym-
metric) and SAT-based approaches. The problem with this
approach lies in the large number of axioms employed which
may significantly slow down a theorem prover, especially be-
cause reasoning with complete state specifications may be at
a too fine-grained level, i.e. very close to “blind search” in the
much too big space of complete state descriptions.

What we would like to achieve is to be able to reason with
incomplete state specifications (for example by propagating
only “weakest preconditions” and/or “strongest effects” in-
stead of complete state information).

As shown above, incomplete state specifications give rise to
situations in which a proof of (2) may construct a different
Plan for each completion (state) S verifying the incomplete
initial state specification Initial. This ensures the existence
of such a plan Plans for each state S, but a given Plans
may not be applicable in all states S’ verifying the incom-
plete specification Initial. On the other hand, the planning
problem amounts to finding a plan that is guaranteed to work
no matter what state we are in.”

Thus it may seem that it is impossible to reduce planning
to proving a DL formula, so as to take advantage of an ex-
isting DL theorem prover. Therefore, it may seem we need
to use a syntactical plan generation approach (like in [10])
by writing a specialized planning algorithm on top of a De-
scription Logic (or Dynamic Logic) theorem prover. However,
writing such a specialized planning algorithm external to the
DL is somewhat inappropriate in a KR formalism like De-
scription Logics, where we would like to be able to impose
various constraints on the plan.

Fortunately, we can avoid this by showing that, although
(1) and (2) are not equivalent in the general case, we can nev-
ertheless recover a “global” plan (i.e. a solution to (1)) from a
proof of (2). In order to do this, we shall single out a state S
whose plan Plans constructed according to (2) is also applica-
ble to all the other states S’. The state S with this property is
the completion of the (incomplete) initial state specification
Initial (obtained by conjoining to Initial a negated literal
—C for each condition C not specified in Initial).

Due to our assumption that the precondition lists of actions
contain only positive literals® the negated literals in state de-
scriptions do not influence the executability of actions (in the
deductive settings, negated conditions are not propagated by
frame axioms). Therefore, the plan Plans for the completed
state S will be applicable in all other states as well and will
be a “global” plan. In our setting, (1) and (2) are therefore
equivalent and we can safely reduce the planning problem to
finding a proof for (2).

The planning problem has thus been reduced to proving
the ALC* theorem [Planpgp_ c4vs]- But proving the validity
of such a formula is usually reduced in DLs to proving the

Initial (case in which Plan” = a is the only solution), so there

exists no “global” plan. But the formula Inttial — (Any*)Final

(i.e. p = (a*)q) is nevertheless provable using the above axioms,

showing that the approach in [6] fails in this case.

5 “Conditional” plans like Plans may be interesting in their own
right, but we do not explore this issue further.

6 If an action had a negated literal ~C' as a precondition, we could
replace it by the precondition €’ and define C’ = =C as an axiom

in the DL.

Liviu Badea

inconsistency of its negation:

[-Planprp_cavs] Initial A [Any*]-Final.

Drawing an analogy with the answer-set of a logic pro-
gramming query, we should be able to modify a DI theorem
prover so that it returns a “falsifying interpretation” Z for
each inconsistent query [-Planpgpp_caps]- This interpreta-
tion would be constructed while trying to build a model of
the formula [-Planpgp_cavs]- Whenever a plan exists, the
latter formula is inconsistent due to a clash involving the goal
condition Final and the plan can be reconstructed from the
(inconsistent) interpretation Z built so far.

Note that unlike many planning systems which do not have
a sound and complete stopping criterion! the above approach
to planning provides a decidable, sound and complete plan-
ning algorithm. This is especially important for proving that
no plan exists.

The above reduction of plan construction to an inconsis-
tency proof may seem somehow counter-intuitive in DLs, since
we might have expected that a plan would correspond to
a model of some formula rather than to a proof that no
such model exists. This viewpoint will be pursued in the
satisfiability-based encoding presented below.

The causal encoding presented above is more appropriate
for reasoning about precondition-triggered causal events of
the environment (as opposed to actions under the full con-
trol of agents — which may or may not choose to execute
them, even if the preconditions are satisfied). It is also able to
represent non-deterministic causal events (events with multi-
ple possible outcomes). But since causal events are not nec-
essarily reversible, the causal encoding is asymmetrical in a
certain sense, and it does not allow a straight-forward rep-
resentation of goal regression (i.e. reasoning backward from
the goals Final). Reasoning in the causal encoding is there-
fore limited to progression (forward reasoning from the initial
state), which may be inefficient (but it is the only type of rea-
soning possible when dealing with such precondition-triggered
causal events).

3.1.2 The symmetrical encoding

The symmetrical encoding deals with representing the rea-
soning about possible outcomes of courses of action without
actually executing the actions. More precisely, we shall write
axioms saying that whenever the preconditions Pre(A) of ac-
tion A are verified and A is executed, the positive effects of
A must hold in the successor state:

Pre(A) — [A]Add(A).

This can be seen more easily in the semantic interpretation:

[Effpep_sym]

holds(Pre(A), S) A do(A, S, S") — holds(Add(A), S").

Similarly with the causal setting, we do not need to explic-
itly mention the deleted effects =Del(A) in the consequent of
the above axiom (because we are in a deductive setting).

The frame axioms [Frpgp] are identical to the ones used
in the causal setting.

Finally, the validity of a plan Plan = A;; 0 A;, 0...0A4;,
is equivalent to proving the theorem Initial — [Plan]Final.

7 They usually set an ad-hoc bound on the length of the plan.

Planning and Scheduling 482

However, since we do not know Plan, we need to prove a for-

mula containing a disjunction of all possible action sequences®

Initial — Final vV [Ai]Final V [A2]Final vV ...V

[Al o Al]Fmal \ [Al o AQ]FH’ZCEZ V... (3)

But unfortunately, the disjunction of value restrictions can-

not be rewritten as a single value restriction? so we cannot
reduce (3) to a formula like Initial — [Any*]Final (which

would be the analog of [Planpgp_caps]). In fact, formula
(3) cannot be encoded in ALC* (or PDL) and not even in
repeat-PDL. In order to represent (3), we need the full ex-
pressive power of the p-calculus, i.e. ALCH (which provides
general fixpoint constructors):

[PlanDED—SYM] Initial — MX.(Final \% [Al]X V...V [Ak]X)

The validity of [Planprp_syar] is equivalent with the in-
consistency of

[_‘Pla”DED—SYM] Init’ial/\l/X.(—!Final/\<A1>X/\. . ./\(Ak>X).

Using a result of Niwinski (mentioned in [14]) saying that
the formula vX.({(A1)X A (A2)X) is not expressible in re-
peat-PDL; we conclude that neither [-Planpgp_syas] nor
[Planpgp_syar] can be expressed in ALC* (not even in its w-
regular extension). Strangely enough, the symmetric encoding
requires more expressive power than does the causal encoding.
However, reasoning in ALC* is just as hard/easy as reasoning

in ALC* (both are EXPTIME-complete).

Regression The above encoding of planning seems to be
more appropriate for progression (i.e. reasoning forward from
the mnitial state and looking for a sequence of actions leading
to the goal state). The following results show however that the
above axioms can be rewritten in an equivalent form that is
more appropriate for regression (backward reasoning from the
final state by recursively replacing goals with action subgoals
until they are satisfied in the initial state). This shows the
intrinsic precondition-effect symmetry of the approach.

Proposition The following azioms are equivalent:
(1)p—lale (2){a")p—q and (3)=q— [a"]-p.
The “regressive” forms of the effect and frame axioms are

therefore:

(A7)Pre(A) — Add(A)
—Add(A) — [AT]-~Pre(A)
(A7)YC = C

-C — [A7]-C.

(Eff~ pED_svm]
or equivalently

[Fr™ pep]
or equivalently

3.2 Planning as testing satisfiability in
ALCT

Viewing planning as satisfiability testing amounts to regard-
ing a plan as a model of some formula rather than as a proof
that no such model exists (as in the deductive approaches).
Planning is thus reduced to model construction, in the spirit
of [9]. But unlike Kautz and Selman, who reduce linear-time
planning to propositional satisfiability, our approach reduces
planning to ALC* satisfiability. A model corresponds thus to a
Kripke structure rather than just a propositional truth assign-
ment (as in [9]). Since ALC* provides the transitive closure
of roles, we do not need to use (like [9]) iterative deepening

8 Similarly with the case of the causal setting.

9 Note that [R1]g V [R2]g # [R1 V Rz2]g = [R1]q A [Rz]g.

Liviu Badea

over fixed-length planning problems. We additionally ensure
the completeness of the termination check (our algorithms al-
ways terminate and in case they do so without finding a plan,
then it is guaranteed that no such plan exists).

The effect and frame axioms used in the deductive ap-
proaches are correct and complete w.r.t. deduction, but they
are not strong enough to rule out anomalous models. For ex-
ample, they admit models in which actions are executed de-
spite the fact that their preconditions are not satisfied. Such
models can be avoided by using axioms of the form
(AYT — Pre(A)

[AT]Pre(A).

For precondition-triggered causal events, we impose the ex-

ecutability axioms:

Pre(A) — (A)T.

The following axiom rules out models in which actions are
executed but their effects do not hold:

(Effsar] [AlEf(A)

where Eff(A) = Add(A)A—Del(A) are the effects of action
Al®Note that in the deductive setting, only the positive effects
Add(A) had to be enforced in the successor states of A. Even
if these states would have been consistent with Del(A), this
would not have been sufficient for executing some other action
whose preconditions are in Del(A). Del(A) should have been
valid in those states and not just consistent with them.

[Presar]
or equivalently

[Execsar]

The effect axiom [Effpgp_gyas] in the symmetric deduc-
tive setting is weaker than its SAT counterpart [Effgs7] since
[Effs47] explicitly enforces =Del(A) in the successor states of
A and since [Effppp_syas] constrains the successor states of
A only if the current states verifies the preconditions Pre(A).

[Eff pep_syar] is too weak for the SAT setting. However,
the intermediate version Pre(A) — [A]Eff(A) is equivalent
with [Effg47] when combined with [Pregar].

The frame axioms need to enforce the persistence not only
of the positive literals (as in the deductive setting)

[Fr-possar] C — [A]C
for C € Conditions — (Del(A) U Add(A))
but also of the negative literals
[Fr-negsar] —C — [A]-C
for C € Conditions — (Pre(A) U Add(A)).

The crucial difference w.r.t. the deductive approach con-
sists in reducing the planning problem to testing the satisfia-
bility of the formula

[Plangar] Initial A (Any*)Final

(or, equivalently, of its regressive variant
[PlanTg47] Final A {(Any™)*)Initial.)

Therefore, a plan will be recovered from a model of the
above formula. This requires practically no modification to
an existing ALC* consistency testing algorithm since such al-
gorithms work by constructing models. In our tests, we have
used the Reg AL system described in [4] for solving propo-
sitional STRIPS planning problems encoded as satisfiability
testing.'!

10 —Del(A) represents the conjunction of the negated conditions
from Del(A).
11 An automated translation tool from STRIPS specifications to

Planning and Scheduling 483

Note that the SAT-based approach requires a completely
specified initial state, in which either C' or =C holds for each
condition C'?If neither €' nor —C holds in state S, then there
may exist anomalous models in which actions having C as
a precondition are executed in S. Fortunately, a completely
specified initial state entails completely specified intermediate
states.

4 Related work

Dynamic logic has been used in the past to encode reason-
ing about actions and plans [10], but a syntactical planning
algorithm implemented on top of a Dynamic Logic theorem
prover was usually employed. In the present paper we reduce
planning to reasoning within a Description Logic, by using
exclusively the DL reasoning services (without any additional
external algorithms).

On the other hand [6] use an enhanced PDL for reasoning
about concurrent actions. Their approach is very closely re-
lated to our asymmetrical deductive approach. However they
use unnecessarily strong axioms to encode actions. As we have
shown, a much weaker form of axioms is sufficient for planning
in this setting. Also, reasoning with complete state informa-
tion as in [6] may be too fine-grained, possibly affecting the
efficiency of the approach. We are trying to propagate just
enough informations in order to solve the planning problem.

REFERENCES

[1] ArTALE A., FRANCONI E. A computational account for a de-
scription logic of time and action. Proc. KR-94, 3-14.

[2] BaADER F. Augmenting concept languages by the transitive
closure: An alternative to terminological cycles. IJCAI-91,
pp. 446-451, also DFKI RR-90-13.

[3] BaDea Liviu. A unified architecture for knowledge represen-
tation and reasoning based on terminological logics. Interna-
tional Workshop on Description Logics, Roma 1995.

[4] BaDea Liviu. A unified architecture for knowledge represen-
tation based on description logics. Proc. ECAI-96, 288-292.

[6] DE GiacoMmo G., LENZERINI M. Concept Language with Num-
ber Restrictions and Fizpoints, and its Relationship with the
Mu-calculus. Proc. ECAI-94, 411-415.

[6] DE Giacomo G., LENZERINI M. Enhanced Propositional Dy-
namic Logic for Reasoning about Concurrent Actions. Proc.
AAAT Spring Symposium, 1995.

[7] DevanBu P.T., LiTMAN D.J. Plan-based terminological rea-
soning. Proc. KR-91, 128-138.

[8] FiscHER M.J., LADNER R.E. Propositional Dynamic Logic of
Regular Programs. Journal of Computer and System Science
18, pp.194-211, 1979.

[9] Kautz H., SELMAN B. Pushing the envelope: planning, propo-
sitional logic, and stochastic search. Proc. AAAI-96.

[10] RoOSENSCHEIN S.J. Plan synthesis: a logical approach. Proc.
TJCAI-81.

[11] ScHILD Kraus. Terminological Cycles and the Propositional
u-Calculus. DFKI Research Report RR-93-18, 1993.

[12] ScHILD Kraus. A correspondence theory for terminological
logics: preliminary report. IJCAI-91.

[13] ScHMIDT-ScHAUSS M., SMoLka G. Attributive concept de-
scriptions with complements. ALJ 48 (1), pp. 1-26, 1991.

[14] STrREETT R.S. Fizpoints and Program Looping: Reductions
from the Propositional Mu-Calculus into Propositional Dy-
namic Logic of Looping. LNCS 193, 359-372, Springer 1985.

ALC* axioms has been implemented for this purpose. Then, the
ALC* reasoning services are used for constructing a plan, i.e. a
model of some formula.

12 An incompleteinitial state can be completed by adding a negated
literal =C' for each unspecified condition C. This works since the
condition sets Pre(A), Add(A) and Del(A) contain only positive
literals.

Liviu Badea

