
Abstract 

We apply a constraint-based Bayesian network in-
ference algorithm to the problem of discovering 
the network of genes involved in four types of 
lung carcinoma using microarray gene expression 
data. The large number of variables (892), the 
small sample size (73 – typical for current mi-
croarray technology), as well as the noisy data re-
quire the ability to reconcile possibly unreliable 
conditional independence tests producing mutu-
ally inconsistent results. Our improved constraint-
based algorithm QFCI is especially suited for in-
ferring the global gene network structure (even in 
the presence of unknown hidden variables) rather 
than just fragmentary high-scoring substructures. 
Moreover, QFCI was able to reconstruct a plausi-
ble substructure of the ‘small cell’ subtype involv-
ing an expression profile typical for neuroendo-
crine differentiation. 

1  Introduction and motivation 
The functioning of biological systems at a molecular level 
is an ideal candidate for AI knowledge discovery, due to 
the complexity and heterogeneity of the entities and 
mechanisms involved (transcriptional regulation, post-
translational modifications, protein to protein interactions, 
etc). Although most fundamental biological mechanisms 
have been uncovered by the painstakingly slow experimen-
tal procedures of biologists, achieving a global understand-
ing of biological systems requires automated discovery 
approaches. On the experimental side, microarray technol-
ogy has enabled the simultaneous measurement of the ex-
pression levels of virtually all genes of an organism. Such 
data acquisition methods of unprecedented scope have to 
be complemented by suitable discovery algorithms, able to 
infer not just shallow associations, correlations or clusters, 
but also causal influence relations among genes. For ex-
ample, these would be very helpful for understanding the 
mechanisms of complex diseases, such as cancer, for 
which numerous microarray studies have been performed. 

The most basic data analysis tools applied to microarray 
datasets involve (supervised or unsupervised) clustering of 

genes and/or expression profiles (samples). Although clus-
tering is very useful for tracking down groups of genes 
with similar expression profiles or possibly well correlated 
with a phenotypic manifestation, it is unable to infer the 
precise (causal) mechanisms involving these genes. Plau-
sible mechanisms could sometimes be guessed for the 
genes that were previously known, but very frequently 
existing knowledge turns out to be too fragmentary to 
make out the details of the mechanism.  

A more ambitious approach would try to employ knowl-
edge discovery methods more refined than clustering. The 
probabilistic as well as noisy nature of the data makes 
Bayesian network inference a promising candidate. This 
setting may even allow the inference of causal relation-
ships between genes, possibly from observational data 
only [5],[9]. 

In this paper, we address the problem of inferring a 
large network of genes involved in four types of lung car-
cinoma from the microarray gene expression data of Gar-
ber et al. [4]. The Garber dataset contains measurements of 
the expression levels of 23,000 cDNA clones (correspond-
ing to 17,108 unique genes) in 73 tissue samples (from 
patients with adenocarcinoma (AC), squamous cell carci-
noma (SCC), small cell (SCLC) and large cell lung cancer 
(LCLC), as well as normal tissue). 918 cDNA clones, cor-
responding to 835 unique genes whose expression varied 
significantly across the tissue samples were selected by 
Garber et al. and standard average-linkage hierarchical 
clustering revealed a faithful match with the morphologi-
cal classification of the tumors (while allowing an even 
more refined subdivision of AC into 3 distinct subgroups). 

But whereas clustering only produces groups of co-
expressed genes, our goal consists in discovering the finer 
underlying structure of their interactions. 

The idea of inferring Bayesian network models from 
gene expression data has been explored before [10],[3]. 
Still, the specificities of our problem make applying exist-
ing approaches particularly difficult.  

First, most causal inference algorithms were designed to 
deal with tens to a few hundreds of variables (e.g. 
TETRAD [9], BNPowerConstructor [1]), while microarray 
data contain measurements for thousands to tens of thou-
sands of genes. Our setting involves 892 variables (884 
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clones from the Garber selection as well as 8 additional 
discrete variables representing the disease subtypes). 

Second, we need to be able to deal with a potentially 
very large number of hidden (latent/unobserved) variables 
(although most of the genes with significant differential 
expression were included, these only cover about 3% of 
the whole genome – still there are also other potentially 
relevant hidden factors, like post-translational modifica-
tions or protein to protein interactions). 

Third, current microarray data is extremely noisy and 
provides too few samples (in our case just N=73) to allow 
the reliable reconstruction of a single model with a high 
statistical significance. Sophisticated approaches, e.g. us-
ing Bayesian Model Averaging [2] have been proposed to 
deal with network structure in a Bayesian manner, espe-
cially when there might be many models (usually exponen-
tially many) with a non-negligible posterior. Decoupling 
the computationally intractable problem1 of evaluating the 
Bayesian posterior probability of certain structural net-
work features into two easier sub-problems (evaluating in 
a closed form the probability for a given variable order and 
summing over a sample of all possible orders [2]) allevi-
ates but doesn’t completely solve the computational diffi-
culty, especially due to the sheer number of variables in 
our problem (≈1000). 

Finally, the interpretation of the resulting structure by a 
human expert critically depends on providing a single rep-
resentation of all the alternative models (such as the par-
tial graph produced by a constraint-based structural infer-
ence method [5],[9]) rather than an explicit enumeration of 
a very large number of models, or the display of just the 
high-scoring fragments of the network (instead of provid-
ing the whole network, possibly with confidence factors in 
its various structural features). 

While Bayesian model averaging over the space of 
structures (or even just variable orders) is computationally 
intractable in our setting with current technology, con-
straint-based methods, which do not search the space of 
models, seem an appealing alternative. (Scoring-based 
procedures also have difficulties in dealing with latent/ 
hidden variables, especially whenever the positions of 
these variables in the structure are unknown.) 

2 An improved constraint-based algo-
rithm 

Algorithms like IC* of Pearl and Verma [5] or the more 
efficient Fast Causal Inference (FCI) algorithm of Spirtes 
et al. [9] start with a completely connected network and 
simply use conditional independence (CI) tests to find 
separators for edges representing indirect influences. Fi-
nally, edge endpoints are placed based on the separators 
found. IC* and FCI are thus very close our problem’s re-
quirements, since: 
- they are able to produce a single representation of the 

(partial) knowledge inferable from the data 
                                                 
1 intractable in our setting (for approximately 1000 variables). 

- they are able to deal with latent (unobserved) variables 
- FCI is fast enough to deal with the about 1000 variables 

(genes) involved in the Garber dataset. 
However, they still have certain important drawbacks 
w.r.t. this particular problem: as they construct causal 
structures by categorical  inference based on the results of 
conditional independence tests, they are sensitive to the 
high amount of noise in the microarray data as well as to 
the small sample size (N=73). And although the independ-
ence tests used are thus not completely reliable, the algo-
rithm does not provide any quantitative measure of the 
confidence in the various features inferred. 

In this paper we show how constraint-based methods 
can be made more robust when dealing with small and 
noisy samples. We then show that our improved QFCI al-
gorithm  can be successfully applied to the Garber dataset. 
Our approach is based on three key ingredients. 

First, quantitative information regarding the reliability 
of the conditional independence tests can be used to quan-
tify our confidence in the structural features of the model 
that are directly based on these tests (such as colliders). 

Second, we combine such confidence factors during 
logical inference (constraint propagation) to estimate our 
confidence in derived structural features (such as edge 
endpoints). 

Finally, since the small sample size may support several 
potentially conflicting models, we provide means for cop-
ing with such inconsistencies by: 
- strengthening the collider and non-collider tests of FCI 

while preserving its efficiency, and by 
- eliminating the remaining inconsistencies (anomalies) as 

well as all the features inferred from these. 

We refer to [5] for the basic notions on Bayesian net-
works. The output of our QFCI algorithm described below 
will be a Partial Ancestral Graph (PAG, or PDAG in 
Pearl’s terminology), which is a concise representation of 
an entire equivalence class of graph models. Unlike stan-
dard PAGs, ours have confidence factors attached to the 
undirected edges, as well as to directed edge endpoints.  

In the following, we use the notations of [9] for describ-
ing PAGs. Briefly, edges can have three kinds of endpoints 
in a PAG: ‘−’, ‘>’ and ‘ο’. We also use the additional 
meta-symbol ‘∗ ’ that stands for any of the three kinds of 
endpoints. 
 An ‘−’ endpoint at Y for an edge X ∗−−  Y denotes the 
fact that Y is an ancestor of X in every graph of the equiva-
lence class represented by the PAG, while an ‘>’ endpoint 
at X for X ∗−>  Y means that Y is not an ancestor of X. Fi-
nally, an ‘ο’ endpoint places no restriction on the ancestor 
relationships. (See [9] for more details.) 

A collider is a structure of the form X ∗−>  Y <−∗  Z.  
A collider is called unshielded iff X and Z are not adjacent 
in the PAG. 

 In the following, we present a constraint-based causal 
inference algorithm, QFCI, which aims at improving the 
robustness of the FCI algorithm in the face of noise and 
small sample sizes. Although our measures of confidence 



are entirely heuristic, applying model averaging methods 
in such a setting with about 1000 variables seems out of 
the question. 
 Employing a two-valued logic for combining the results 
of conditional independence tests in noisy domains may 
lead to inconsistencies, or anomalies. In fact, we have ob-
served the occurrence of anomalies not only in microarray 
datasets (such as the Garber lung carcinoma study [4], the 
Rosetta Compendium of yeast microarray experiments and 
the Spellman yeast cell cycle data), but also in synthetic 
data. The most important type of anomaly observed was a 
so-called “collider anomaly”, which is due to the inconsis-
tencies between different colliders at a given node Y. 

Recall that FCI recognizes colliders as follows: for non-
adjacent X and Z, X ∗−∗  Y ∗−∗  Z is a collider iff  
Y ∉  Sep(X,Z)  (where Sep(X,Z) is the first separating set 
found for X and Z:  X ⊥  Z | Sep(X,Z)). 

Definition (collider anomaly). Two unshielded colliders 
detected by the FCI algorithm X1 ∗−>  Y <−∗  X2 
(Y∉ Sep(X1,X2)) and Z1 ∗−>  Y <−∗  Z2 (Y∉ Sep(Z1,Z2)) are 
inconsistent w.r.t. the current set of separators Sep (or 
short, Sep-inconsistent) iff ∃ i,j∈ {1,2} such that Xi and Zj 
are not adjacent and Xi ∗−>  Y <−∗  Zj is not a collider w.r.t. 
Sep, i.e. Y∈ Sep(Xi,Zj). 

As can be seen in the following 
Figure, a collider anomaly ap-
pears whenever a pair of ar-
rowheads from different collid-
ers (such as X1 ∗−>  Y <−∗  Z1) 
doesn’t form a collider accord-
ing to Sep. 

Example. Since the true structure of the gene network un-
der study is unknown, we have first tried our algorithms on 
a randomly generated synthetic network of 40 variables (of 
which 3 were latent) and 35 edges. The main purpose of 
this trial was the study of collider anomalies. Samples of 
sizes N=1000 and N=73 (the latter being equal to the sam-
ple size of the Garber dataset) were generated from this 
network and used to study the influence of N on the undi-
rected (Markov) skeleton of the inferred network, as well 
as on the edge endpoints (in the directed network).   
 An example of a collider anomaly in our synthetic net-
work involved the colliders X7 ∗−>  X32 <−∗  X22 (X32 ∉  
Sep(X7,X22)=∅ ) and X7 ∗−>  X32 <−∗  X36 (X32 ∉  
Sep(X7,X36)={X39}) for which X22 ∗−>  X32 <−∗  X36 is 
not a collider w.r.t. Sep since X32 ∈  Sep(X22,X36) 
={X32}. 
 
 
 
 
 
 
 
Figure 2. (a) The true graph (b) The collider anomaly 

In other words, we have to place an arrow X22 ∗−>  X32 
(because X7 ∗−>  X32 <−∗  X22 is a collider w.r.t. Sep) and 
an arrow X36 ∗−>  X32 (since X7 ∗−>  X32 <−∗  X36 is also 
a collider w.r.t. Sep), but these two arrows are inconsistent 
since X32 ∈  Sep(X22,X36). 
 As can be seen by looking at the true graph in Figure 
2(a), the inconsistency was due in this case to wrongly 
recognizing X7 ∗−>  X32 <−∗  X36 as a collider based on 
Sep(X7,X36)={X39} which does not contain X32. The fact 
that Sep records only a single separator set (among poten-
tially many others) makes the collider recognition rule of 
FCI sensitive to errors in the independence test. In this 
specific case, the error in Sep(X7,X36) was due to a type-II 
error in the test X7 ⊥  X36 | X39, which succeeded (p-
value=0.728 > α=0.05, for N=1000) despite the fact that 
X39 does not d-separate X7 from X36. 
 Since it would be very inefficient to recompute all the 
separators of X7 and X36, we strengthen the FCI collider 
test by double checking whether adding X32 to the current 
separator Sep(X7,X36) makes X7 and X36 dependent:  
X7 ⊥/  X6 | X39,X32. (If X32 were a true collider, condition-
ing on it would d-connect X7 and X36.) If however, X7 and 
X36 remain independent, we cannot safely declare X32 a 
collider. 

Definition (strong collider test).  
For X ∗−∗  Y ∗−∗  Z, Y passes the strong collider test iff 
Y∉ Sep(X,Z) and X ⊥/  Z | Sep(X,Z) ∪  {Y}, while 
Y passes the strong non-collider test iff Y∈ Sep(X,Z) and  
X ⊥/  Z | Sep(X,Z) \ {Y}. 

The strong non-collider test is dual to the strong collider 
test: we double check whether removing Y from the sepa-
rator Sep(X,Z) makes X and Z dependent (as it should if Y 
were not a collider). If it doesn’t, we refrain from declar-
ing Y a non-collider. 
 Collider anomalies that are removed by the stronger 
definition of (non)collider are called reducible. The others 
are called irreducible. 

Definition (irreducible collider anomaly). An irreducible 
collider anomaly is a pair of strong colliders X1 ∗−>  Y <−∗  
X2 and Z1 ∗−>  Y <−∗  Z2 such that Xi ∗−>  Y <−∗  Zj is a 
strong non-collider for some i,j∈ {1,2}. 
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QFCI 

1. Initialize the undirected graph by computing uncon-
ditional independencies 
for all pairs of variables X,Y 

perform the unconditional independence test X ⊥  Y and 
set pu(X,Y) to its p-value2 and p(X,Y) = pu(X,Y)3 
if pu(X,Y) < α (the test failed w.r.t. the significance level 
α) 

add an undirected edge X ο−ο Y to the PAG 
else (pu(X,Y) ≥ α, i.e. the test succeeded) 

set Sep(X,Y) = ∅   

2. Refine the undirected graph by conditional inde-
pendence tests 
for k = 1..kmax (consider conditioning sets of increasing 
size) 

for all undirected edges X ο−ο Y (in decreasing order of 
their labels pu(X,Y), i.e. increasing order of the associ-
ated unconditional correlations) 

let N = neighbors(X) ∪  neighbors(Y) 4 
if |N| ≥ k 

for all subsets S ⊆  N of size k (constructed by add-
ing k nodes Z∈ N to S in increasing order of their 
minimal p-labels5 min{pu(Z,X), pu(Z,Y)}) 

perform the conditional independence test  
X ⊥  Y | S and let p be its p-value 
if p ≥ α (the test succeeded, i.e. S is a separator) 

delete the undirected edge X ο−ο Y 
set Sep(X,Y) = S and p(X,Y) = p 
break 

else if p > p(X,Y) then set p(X,Y) = p  
(i.e. set p(X,Y) to the maximal p-value of the  
X ⊥  Y | S  CI tests performed so far) 

3. Search for potential colliders and non-colliders 
for all variables Y 

for all pairs X,Z of non-adjacent neighbors of Y 
if X ∗−∗  Y ∗−∗  Z passes the strong collider test  

add the positive assertion  
X ∗−>  Y ∧  Z ∗−>  Y : cf 

with confidence factor  
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where pd = 
p_value(X ⊥  Z | Sep(X,Z) ∪  {Y}) < α is the p-value 

                                                 
2 pu(X,Y) will be used later to quantify the degree of unconditional 
correlation of X with Y. 
3 p(X,Y) will be the largest p-value of a conditional independence 
test performed so far on X and Y: p(X,Y) = maxS p_value(X ⊥  Y | S). 
We use p(X,Y) to quantify our confidence in the undirected edge 
X∗−∗ Y. 
4 For simplicity, we do not reproduce here the more complex deter-
mination of a complete set of candidate separators used in FCI 
(based on Possible-D-Sep), which might not be reliable for small 
samples. 
5 i.e. in decreasing order of their maximal unconditional correlations 
max{|ru(Z,X)|, |ru(Z,Y)|}. 

of the failed independence test performed during 
the strong collider test6 

else if X∗−∗ Y∗−∗ Z passes the strong non-collider test 
add the negative assertion  

¬  (X ∗−>  Y ∧  Z ∗−>  Y) : cf 
with confidence factor  
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where pd = 
p_value(X ⊥  Z | Sep(X,Z) \ {Y}) < α is the p-value 
of the failed independence test performed during 
the strong non-collider test 

4. Eliminate collider anomalies 
for all pairs of positive assertions  

X1 ∗−>  Y ∧  X2 ∗−>  Y : cf1  and  Z1 ∗−>  Y ∧  Z2 ∗−>  Y : cf2 
if there exists a negative assertion  

¬ ( Xi ∗−>  Y ∧  Zj ∗−>  Y ) : cf  for some i,j∈ {1,2} 
remove these positive and negative assertions 

5. Constraint propagation of assertions 
repeat  

propagate assertions (using the propagation rules below) 
until no more propagations are possible 
remove inconsistencies 

The worst-case complexity of the algorithm is exponen-
tial in the number of variables, because in principle it has 
to consider all subsets of variables as conditioning sets. 
Fortunately however, genetic networks typically have 
small in- and out-degrees k, so that in practice the run-time 
is dominated by the independence tests conditional on size 
1 subsets (X ⊥  Y | S, |S|=1) and thus is bounded above by 
O(n3), where n is the number of variables. This upper 
bound is only attained for networks of variables that can-
not be separated by unconditional independence tests, case 
in which phase 1 results in a network with O(n2) edges. In 
such cases, phase 2 will initially start with nodes having n 
direct neighbors each, so that O(n3) conditional independ-
ence tests X ⊥  Y | S (|S|=1) may be performed in the worst 
case. In practice, it is essential to reduce the number of 
direct neighbors of nodes as quickly as possible. This is 
achieved by our ordering heuristic which tries to separate 
the pairs of variables (X,Y) in increasing order of their un-
conditional correlation |ru(X,Y)|. This heuristic assumes 
that (unconditionally) less correlated variables will be eas-
ier to separate conditionally. Scheduling independence 
tests that are more likely to succeed earlier reduces node 
neighborhoods as quickly as possible, thereby reducing the 
number of candidate neighbors in the later phases. 

Quantitative information is also used in phase 2 when 
exploring potential separator sets S for a pair of nodes 
(X,Y). Variables Z with a higher (unconditional) correla-
tion with one of X or Y are more likely to be true neighbors 
(as opposed to just temporary neighbors at this stage of the 
algorithm7). 
                                                 
6 Note that  p(X,Z) = p_value(X ⊥  Z | Sep(X,Z)) ≥ α and  
p(X,Y) =  maxS p_value(X ⊥  Y | S) < α (similarly, p(Y,Z) < α). 
7 Recall that initially, nodes may be connected to many more other 
nodes than their direct neighbors. 



The search for colliders in phase 3 employs the strong 
collider and non-collider tests. But since even these stricter 
tests may not eliminate all collider anomalies, we need to 
explicitly remove the colliders involved in such anomalies.  

To allow a more precise evaluation of the results, the 
discovery of potential colliders and non-colliders produces 
assertions labeled by confidence factors (based on quanti-
tative information from the independence tests). 

Definition (assertions). Assertions can be either positive 
X ∗−>  Y ∧  Z ∗−>  Y : cf               (p2) 
X ∗−>  Y : cf                    (p1) 
or negative 
¬  ( X ∗−>  Y ∧  Z ∗−>  Y ) : cf             (n2) 
¬  X ∗−>  Y : cf                   (n1) 
Assertions of the form (p2), (p1), or (n1) are called defi-
nite, while those of the form (n2) are called disjunctive 
(since they are equivalent to ¬  X ∗−>  Y ∨  ¬  Z ∗−>  Y : cf). 

A positive assertion of the form (p2) means that we are 
confident with degree cf that both arrowheads at Y (X ∗−>  
Y and Z ∗−>  Y) should appear in the partial graph. A nega-
tive assertion of the form (n2) means that the arrowheads 
X ∗−>  Y and Z ∗−>  Y cannot both appear in the partial 
graph (with confidence cf).  

Collider anomalies are inconsistencies in the assertions. 
Under the usual assumptions (such as faithfulness and the 
representability of the observed JPD by a single graph 
model), the most likely explanation for such inconsisten-
cies is the small sample size (73 in our application), which 
cannot exclude several potentially conflicting models. As 
already argued above, the very large number of variables 
(around 1000) entails a huge number of such high prob-
ability models, which makes their analysis by a human 
expert impossible. We therefore require the synthesis of a 
single representation of these alternative models (the 
PAG), which is analysable by an expert. 

While some anomalies disappear when using our 
stronger (non)collider test, the remaining irreducible ones 
need to be eliminated by removing the conflicting asser-
tions (phase 4). 

The remaining assertions, which are now guaranteed to 
be consistent, are subsequently propagated in phase 5. 

Propagation (for example of ¬ (X ∗−>  Y ∧  Z ∗−>  Y) and 
Z ∗−>  Y) can produce definite (unary) negative assertions 
of the form ¬  X ∗−>  Y, which can be automatically con-
verted to X ∗−−  Y (recall that an ‘>’ arrowhead into Y 
means that Y is not an ancestor of X, while an ‘−’ endpoint 
says that Y is an ancestor of X). But in the absence of hid-
den selection variables, we cannot have edges with ‘−’ 
endpoints at both ends, so X ∗−−  Y could be immediately 
turned into X <−− Y. Unfortunately, placing new ‘<’ ar-
rowheads may lead to new inconsistencies,8 for example 
involving U ∗−>  X <−− Y and the negative assertion (non-
collider) ¬ ( U ∗−>  X <−∗  Y ). To make things even more 
complicated, the arrow X <−− Y may propagate another 
                                                 
8 of course, only in the case of unreliable CI tests.  

arrow, for example V <<<<−−−−−−−− X <−− Y before the discovery of 
the inconsistency with U ∗−>  X. 

As all assertions involved in inconsistencies must be 
eliminated (in the case of the X <−− Y arrow, we’ll simply 
remove the arrowhead at X obtaining X ο−− Y), we have to 
keep track of the inferences (propagations) made from 
these assertions, in order to enable their removal (as they 
are based on inconsistent premises). 

In our case, removing the arrowhead at X in X <−− Y 
will have to invalidate the V <−− X arrow as well (of 
course, only if V <−− X has no other “justification”). 

More generally, we attach a “justification” to each as-
sertion, representing the successive insertions of arrow-
heads (for avoiding X −−− Y edges) that have lead to plac-
ing the current arrowhead. 

Definition (justification of an assertion). The justifica-
tion of a primitive assertion (i.e. an assertion generated in 
phase 3 and based on CI tests) is empty. The justification 
of a derived assertion (i.e. an assertion propagated in 
phase 5) is a set of atomic labels j = {l1, l2, ..., ln} repre-
senting arrowheads placed for avoiding X −−− Y edges. 

We use the notation A : cf :: j  for an assertion A with 
justification j  (empty justifications can be omitted). 

An ATMS could be used to manage assertions and their 
justifications. But the propagation rules in our domain are 
very simple due to the very constrained form of assertions 
(in the following, a and b stand for edge arrowheads of the 
form X ∗−>  Y): 

a ∧  b : cf ⇒  a : cf,   b : cf 
a : cfa :: ja,  ¬ (a ∧  b) : cf ⇒  ¬ b : cfa⋅cf :: ja 

¬ (X ∗−>  Y) : cf :: j ⇒  X ∗−−  Y : cf :: j 
X οοοο−− Y : cf :: j ⇒  Y −−>>>> X : cf :: j  ∪∪∪∪  {li}  

    (with li a new atomic label). 

An arrowhead inconsistency is treated by the rule: 
a :: j1,  ¬ a :: j2    ⇒     remove_inconsistency(j1, j2) 

which  deletes all assertions A :: j with justifications con-
taining j1 or j2: j ⊇  j1 (but only if j1 ≠ ∅ ) or j ⊇  j2 (but only 
if j2 ≠ ∅ ). 

Finally, after all inconsistencies have been removed, we 
aggregate the confidence factors for edge endpoints as 
follows (since a given edge endpoint can be supported by 
several assertions with different confidence factors): 

cf (a)= max{cfi  |  a : cfi }. 
(Assertions with confidence factors below a given thresh-
old, e.g. α=0.05, are automatically discarded.) 

Note that the rule that orients edges for avoiding the for-
mation of new colliders (rule R1 in [5], or rule G(ii) in 
[9]):  X ∗−>  Y ∗−∗  Z   ⇒    X ∗−>  Y  −−> Z  is a special 
case of our constraint propagation of assertions (phase 5).  

Also note that we do not apply the acyclicity rule (R2 
from [5], or G(i) from [9]), since genetic networks are po-
tentially cyclic. However, dealing with both cycles and 
latent variables is an open research problem, so we do not 
aim at completeness in the presence of cycles. (The com-
plexity of the CCD algorithm [7] dealing with cycles but 
only in the absence latent variables –which is anyway too 



restrictive in our setting– suggests the extraordinary diffi-
culty in devising a complete algorithm treating both latent 
variables and feedback.) 

3 Results for the Garber dataset 
We have run QFCI on the Garber dataset with a signifi-
cance level α=0.05 for the conditional independence tests. 
Only 11 irreducible collider anomalies were produced 
(showing on the other hand that there are at least 311 = 
177,147 different alternative high-probability models and a 
similar number of variable orderings, which would repre-
sent a serious problem for model averaging approaches). 
Moreover, 77 of the 109 anomalies encountered by the 
simple FCI algorithm were removed by our stronger col-
lider test, without affecting the computational efficiency of 
FCI (i.e. without exhaustively performing all CI tests for 
the separable pairs of variables – which are the majority). 
 Since expression levels in microarray measurements are 
continuous variables, we have chosen to employ CI tests 
based on the Fisher z transform of partial correlations. 
(Strictly speaking, these tests are only correct if the vari-
ables are jointly normal, but they are still often useful for 
non-normal distributions as well. The alternative of discre-
tizing the variables seems worse, especially in view of the 
small sample size N=73, as it would further reduce the 
power of the tests.) 

Running QFCI on the Garber dataset produced very en-
couraging results from a biological viewpoint. Figure 3 
depicts the neighbours (up to depth 5) of the discrete vari-
able associated to the ‘small cell’ subtype.10 It is particu-
larly striking that QFCI finds ‘small cell’ connected to a 
single gene of unknown function, INSM1 (insulinoma-
associated 1), which is known to serve as a marker for 
lung tumours of neuroendocrine differentiation. In fact, 
many of the genes in the neighbourhood of INSM1 show a 
neuroendocrine differentiation profile, and/or involvement  
in oncogenic transformation, cell fate specification, prolif-
eration, cellular signaling (e.g. growth factor receptors), 
etc. All of the genes hand-picked by human experts in 
Garber et al. in their discussion of SCLC are very close 
neighbors in our network: 7B2 (SGNE1), glutaminyl cy-
clase (QPCT), L-myc (Hs.92137) and the neuronal differ-
entiation marker achaete-scute homolog (IMAGE: 
1416420), while several others appearing in our network 
have unknown functions and should be further investi-
gated. 

Though very encouraging, the results obtained should be 
regarded with caution, due to the high experimental noise, 
the small sample size, the potentially very large number of 
hidden variables and the impossibility of gathering data 
from single cells (or at least from collections of cells with 
very low variance) [10]. Still, they could represent a good 
starting point for elucidating the details of the genetic net-
                                                 
10 Due to space limitations, we only discuss the results obtained for 
the ‘small cell’ subtype. 

works involved in lung carcinoma by enabling much better 
targeted experiments. 

4 Related work and conclusions 
Friedman et al. [3] use a scoring-based approach to deal 
with the yeast cell cycle data of Spellman et al. Their 
SparseCandidate algorithm is essentially a model selection 
approach able to cope with the extremely large search 
space of structures. But unfortunately, for small sample 
sizes and thereby many alternative models, model selec-
tion makes somewhat arbitrary choices between these al-
ternative models and thus only the highest confidence fea-
tures can be considered reliable guesses (unfortunately, 
these make up just a small and sparse fragment of the 
whole network). This problem is however addressed in [2] 
in the context of model averaging. Our own experiments 
with the Spellman dataset showed mixed results, which we 
believe are due to the influence of a variable (gene) from a 
sample taken at a particular time-point of the cell cycle on 
another variable from a different sample (taken at a differ-
ent time-point11). 
 Pe’er et al. [6] infer sub-networks of genes from per-
turbed expression profiles taken from the Rosetta Com-
pendium for yeast using a greedy hill-climbing scoring-
based approach (with similar problems due to the small 
sample size). The puzzling discrepancies mentioned in [6] 
may be due to the heterogeneous nature of the Compen-
dium (which is a compilation of experiments performed in 
different laboratories), as well as to the inability of dealing 
with latent (hidden) variables. 

The BNPowerConstructor [1] also employs quantitative 
information related to the independence tests in a con-
straint-based algorithm. However, extending it to deal with 
latent variables or small samples seems extremely diffi-
cult, if not inherently impossible (with latent variables, his 
‘try_to_separate_B’ procedure is no longer complete). 
 Here we have shown that constraint-based methods can 
be improved to deal with small and noisy samples by a 
more sophisticated propagation of constraints followed by 
a careful elimination of the inconsistencies (anomalies) 
due to unreliable conditional independence tests. The re-
sults on the Garber dataset are in line with the current hy-
pothesis of biologists that the ‘small cell’ subtype corre-
sponds to a neuroendocrine differentiation profile. 
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Figure 3: The ‘small cell’ sub-network. Bold directed 
edges are of type −−>, simple directed edges ο−>, bold 
undirected edges <−>, and dotted undirected edges ο−ο. 


