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Abstract. Most implemented ILP systems construct hypotheses clause

by clause using a re�nement operator for clauses. To avoid the problems
faced by such greedy covering algorithms, more 
exible re�nement oper-

ators for theories are needed. In this paper we construct a syntactically

monotonic, �nite and solution-complete re�nement operator for theories,
which eliminates certain annoying redundancies (due to clause deletions),

while also addressing the limitations faced by HYPER's re�nement op-

erator (which are mainly due to keeping the number of clauses constant
during re�nement).

We also show how to eliminate the redundancies due to the commuta-

tivity of re�nement operations while preserving weak completeness as

well as a limited form of 
exibility. The re�nement operator presented
in this paper represents a �rst step towards constructing more e�cient

and 
exible ILP systems with precise theoretical guarantees.

1 Introduction and motivation

Although the research in Inductive Logic Programming (ILP) has concentrated
on both implementations (e.g. [8, 7]) and theoretical results [4] (such as cor-
rectness, completeness and complexity), there is still a signi�cant gap between

these aspects, mainly due to a poor understanding of the combinatorial aspects
of the search for solutions. In this respect, correctness and completeness results
are necessary but not su�cient for obtaining an e�cient learner. On the other
hand, ad-hoc search heuristics might prove e�ective in certain cases, but the lack
of theoretical guarantees limits their applicability and the interpretation of their
results.

With only a few notable exceptions (such as HYPER [3], or MPL [5]), most
implemented ILP systems construct hypotheses clause by clause by employing

a re�nement operator for clauses. As shown by Bratko [3], such greedy covering
algorithms face several problems such as: unnecessarily long hypotheses (with
too many clauses), di�culties in handling recursion and di�culties in learning
multiple predicates simultaneously. These problems are due to the fact that a
good hypothesis is not necessarily assembled from locally optimal clauses. In fact,
locally inferior clauses may reveal their (global) superiority only as a whole. And
it is exactly this case (of mutually interacting clauses) that most implemented
ILP systems do not deal with well.



A solution to this problem would be to construct hypotheses as a whole
(rather than on a clause by clause basis) by using a re�nement operator for

entire theories. But unfortunately, the combinatorial complexity of a re�nement
operator for clauses is high enough already, making a naive re�nement operator
for theories useless for all practical purposes.

The main problem encountered when constructing a re�nement operator for

theories is its redundancy, which heavily multiplies the size of an already huge
search space. Sometimes, a good search heuristic can compensate for the size of
such search spaces. However, very often, the failure in coping with the required
search is attributed solely to the weakness (or maybemyopia) of the heuristic em-
ployed. In [2] we have argued that among the responsible factors for such failures
one should also count the lack of 
exibility of the re�nement operator, its redun-
dancy , as well as its incompleteness. While completeness and non-redundancy
are desiderata that have been achieved in state-of-the art systems like Progol
[7], 
exibility has hardly been studied or even de�ned in a precise manner. (A
precise de�nition of 
exibility of re�nement operators for clauses was given in
[2].)

Flexibility becomes an issue especially in the case of (weakly) complete and

non-redundant re�nement operators, because redundancy is usually avoided by
imposing a strict discipline on re�nement operations, which usually relies on a
predetermined (static) ordering of the literals, variables and even clauses. The
resulting lack of 
exibility can unfortunately disallow certain re�nements, even
in cases in which the search heuristic recommends their immediate exploration
(These hypotheses will be explored eventually, but maybe with an exponential
time delay.) The solution to this problem, proposed in [2], consists in enhanc-
ing the 
exibility of the clausal re�nement operator by using a dynamic literal
ordering, constructed at search time. In this paper, we show how to construct a

exible re�nement operator for theories.

Combining (weak) completeness and non-redundancy with 
exibility has
been studied in [2], but only for clausal re�nement operators. Althoughmaximal


exibility can only be achieved at the expense of intractability and exponential
storage space, a limited form of 
exibility can be achieved without signi�cant
additional costs, while preserving the completeness and non-redundancy of the
re�nement operator. This hints at a very general trade-o� between (weak) com-
pleteness, non-redundancy, 
exibility and tractability.1

1 If we insist on (weak) completeness and non-redundancy, there is a fundamental

trade-o� between 
exibility and tractability. For achieving non-redundancy, we have

to store somehow a representation of the visited hypotheses space, so that every time

a re�nement of some H2 to some H 0 is considered, we can check that H 0 hasn't been

visited before. For tractability (of these checks), we cannot store a very �ne grained
representation of the visited space, so whenever visiting a hypothesis H we will store

a coarse grained representation ~H of H. However, this will block (in the future) not

only the re�nements leading to H, but also all those H 0
2 ~H that are indiscernible

w.r.t. the coarse graining. This diminishes the 
exibility of the re�nement operator.

A natural question is \why don't we use the partial re�nement tree as a sort

of index structure for the visited hypotheses space?" Although the depth of the



At the level of clauses, FOIL [8], for example, gives up completeness for
maximum 
exibility. But if the heuristic fails to guide the search to a solution,
the system cannot rely on a complete re�nement operator to explore alternative
paths. On the other hand, Progol [7] insists on completeness and non-redundancy
at the expense of 
exibility: some re�nement steps are never considered because
of the static discipline for eliminating redundancies. Finally, systems based on
ideal re�nement operators are complete and can be maximally 
exible, but they
are highly redundant.

At the level of theories, both FOIL and Progol construct clauses one by one
(Progol does this for ensuring non-redundancy and weak completeness). MPL
[5] has more 
exibility, but is incomplete. HYPER is less incomplete and still
performs surprisingly well, even if the search heuristic were not perfect. This is
mainly due to its avoiding an overly complex re�nement operator such as2

�T (T ) = f(T n fCg)[ �(C) j C 2 Tg

by keeping the number of clauses constant during re�nement:

�H(T ) = f(T n fCg) [ fC
0g j C 2 T; C0 2 �(C)g: (1)

Therefore, HYPER has to start with theories containing multiple copies of cer-
tain very general clauses (corresponding to the predicates to be learned). Thus,
the main reason for HYPER's success seems to be its avoidance of certain redun-
dancies and combinatorial explosions by keeping the number of clauses constant.
But there are still other redundancies, such as:

{ redundancies due to the commutativity of the re�nement operations

{ redundant clauses within a theory (which are not removed in order to give
them later the chance to be specialized).

Keeping a constant number of clauses in theories during re�nement is especially
problematical when the number of clauses in the target theory cannot be easily
estimated. If this number is signi�cant, HYPER will rediscover fragments of
the target theory over and over again without being able to reuse an k-clause
solution fragment in a larger n-clause theory (n > k).3 This also signi�cantly
increases the search time. Even worse, when learning theories for n predicates

re�nement tree is typically logarithmic in the number of visited hypotheses, searching

for a given hypothesis, for example a clause with literals L1L2 : : : Ln, involves in
general searching along n! paths (corresponding to all permutations of L1L2 : : : Ln).

Of course, at most one such path will actually lead to our hypothesis (since the

re�nement tree belongs to a non-redundant operator), but the search along n! paths
at each re�nement step cannot be avoided and is intractable in practice.

2 Theories T are viewed as sets of clauses C. � is a complete re�nement operator for

clauses.
3 In HYPER we also have redundancies between theories with di�erent numbers of

clauses, for example between T1 = T and T2 = T ^ Trest for a (very speci�c) Trest
such that 8C2 2 Trest; 9C1 2 T with C1 � C2. (This ensures that T1 � T2.)



p1; p2; : : : ; pn (while allowing at most N clauses for each of them), HYPER will
have to consider Nn start theories.

In this paper we present a re�nement operator for theories that solves most
of the above-mentioned problems:

{ it is complete and 
exible (i.e. allows interleaving the re�nement of clauses)

{ it can exploit a good search heuristic by avoiding the pitfalls of a greedy
covering algorithm

{ it doesn't keep the number of clauses in a theory constant: it introduces new
clauses exactly when these are needed

{ it never deletes clauses (unlike MPL for example, where deleted clauses have
to be marked to avoid adding them again later).

2 Re�nement operators for theories

Re�nement operators decouple the search heuristic from the search algorithm.
Instead of the usual re�nement operators for clauses, we will construct re�ne-
ment operators for entire theories. For a top-down search, we deal with down-

ward re�nement operators, i.e. ones that construct theory specialisations. More
precisely, we will consider re�nement operators w.r.t. the subsumption ordering

between theories.

In the following, we will regard clauses as sets of literals (connected by dis-
junction) and theories as sets of clauses (connected by conjunction). Clauses will
be denoted by C, while theories by T (possibly with super/sub-scripts).

De�nition1. Clause C1 subsumes clause C2, C1 � C2 i� there exists a substi-
tution � such that C1� � C2 (the clauses being viewed as sets of literals).

Theory T1 subsumes theory T2, T1 � T2 i� 8C2 2 T2: 9C1 2 T1 such that
C1 � C2.

A hypothesis H (either a clause or a theory) properly subsumes H
0, H � H

0

i� H � H
0 and H

0 6� H.

H and H
0 are subsume-equivalent , H � H

0 i� H � H
0 and H

0 � H.

De�nition2. A downward re�nement operator for theories �T maps theories T
to sets of theories subsumed by T : �T (T ) � fT

0 j T � T
0g:

De�nition3. A re�nement operator � : HY P ! 2HY P is called:

{ (locally) �nite i� �(H) is �nite and computable for all hypotheses H.

{ proper i� for all H, �(H) contains no H
0 � H.

{ complete i� for all H and H
0, H � H

0 ) 9H 00 2 �?(H) such that H00 � H
0.

{ weakly complete i� �
�(HTOP ) covers the entire set of hypotheses HY P

(HTOP being the top hypothesis, for example the empty clause 2 in the
case of clauses, or the theory f2g containing the empty clause in the case of
theories).



{ solution complete (for theory re�nement operators only) i� for all H � H
0

such that H and H
0 cover all positives, 9H00 2 �

?(H) such that H 00 covers
all positives and only a subset of the negative examples covered by H

0.
{ non-redundant i� for allH1;H2 andH,H 2 �?(H1)\�

?(H2)) H1 2 �
?(H2)

or H2 2 �
?(H1).

{ minimal i� for all H, �(H) contains only downward covers4 and all its ele-
ments are incomparable (H1;H2 2 �(H)) H1 6� H2 and H2 6� H1).

Re�nement operators have a dual nature. On the one hand, they make syn-
tactic modi�cations to clauses and theories. On the other, these syntactic mod-
i�cations have to agree with a semantic (generality) criterion (for a downward
operator, the re�nements have to be specialisations).

A re�nement operator that never performs any deletions is called syntactically

monotonic (however, such an operator may perform replacements). Syntactical
monotonicity is important from a practical point of view since it avoids certain
redundancies (the target of a deletion could also be reached without introducing
the deleted element).

Downward re�nement operators for clauses operate by adding literals and
are therefore syntactically monotonic. (Adding literals to clauses produces even
more speci�c clauses.)

However, adding clauses to theories makes these theories more general. Con-
structing a syntactically monotonic downward re�nement operator for theories
(i.e. one that doesn't delete clauses) is therefore not as simple as for clauses.

Let �(C) be a �nite and complete re�nement operator for clauses. �(C) in-
duces the following �nite and complete re�nement operator for theories:

�T (T ) = f(T n fCg) [ �(C) j C 2 Tg % re�nement (2)

[ fT n fCg j C 2 Tg % (clause) deletion

In other words, �T either replaces a clauses C 2 T by (the conjunction of) all its
re�nements �(C), or deletes a clause C 2 T . The latter alternative (clause dele-
tion) is necessary for completeness, although it spoils the syntactic monotonicity
of �T , making it highly redundant and therefore impractical.

At this point, Bratko [3] severely restricts the re�nement operator to reduce
its non-redundancy by keeping the number of clauses constant during re�nement
(see (1) above). The resulting re�nement operator is however incomplete. This
leaves open the question of whether a syntactically monotonic and complete
re�nement operator can be constructed.

3 A syntactically monotonic re�nement operator for

theories

In the following, we construct a syntactically monotonic, �nite and solution-

complete re�nement operator for theories. (A solution-complete re�nement op-
erator may not generate all possible theories, but it will guarantee the generation

4 H 0 is a downward cover of H i� H � H 0 and no H 00
2 HY P satis�es H � H 00

� H 0.



of all solutions, i.e. theories covering all positive examples and no negative ex-
amples, while locally maximizing a certain covering heuristic.)

To start with, note that �T (T ) replaces a clause C by all its clause re�nements
�(C). This produces in just a few re�nement steps very long theories. These could
be simpli�ed by clause deletion, but it still begs for the following question: are
all clauses from �(C) really necessary in the re�nement of T?

The answer is `no', especially when strict subsets �0 of �(C) are capable of
covering (jointly with T n fCg) all positives. Indeed, even if (T n fCg)[ �(C) is
in principle more general than (T n fCg)[ �0, the introduction of the redundant

clauses �(C)n�0 in the re�nement of T seems unjusti�ed, especially since it only
increases theory size without improving its coverage (since (T n fCg) [ �(C) is
more general, it could in fact cover more negative examples! On the other hand,
both theories cover all positives.5)

For obtaining minimal theories using a downward operator, we should there-
fore only add the smallest subsets �0 of �(C) that preserve the covering of all
positives:

�
0

T (T ) = fT
0 = (T n fCg) [ �0 j for C 2 T and �

0 � �(C) minimal (3)

(w.r.t. set inclusion) such that T 0 covers all positivesg

Considering a minimal6 �0 � �(C) instead of the full �(C) ensures that clauses
which do not interact in (or jointly contribute to) covering the positives are not
kept together, thereby minimizing the theory size (which is obviously important
in learning).

Normally, if the clauses Ci of �(C) = fC1; : : : ; Cng do not \interact", we
re-obtain HYPER's re�nement operator

�
0

T (T ) = f(T n fCg) [ fCig j C 2 T; Ci 2 �(C)g:

However, in general, clauses Ci 2 �(C) do interact. These are the cases in
which our new re�nement operator increases the number of clauses in the theory.
This is done only when the introduction of new clauses is necessary for preserving
the coverage of all positives.

For example, when re�ning a theory T (by re�ning one of its clauses C 2 T ),
the number of clauses will increase only if some Ci 2 �(C) is not capable of
covering7 all positives by itself, so that at least some other Cj 2 �(C) is needed
as well (see Figure 1): T 7! (T n fCg) [ fCi; Cjg: Obviously, replacing C by
the more speci�c Ci ^ Cj may avoid covering some negative examples.

The unrestricted re�nement operator �T makes minimal re�nement steps
(whenever it doesn't perform deletions) since (T n fCg) [ �(C) is more general
than (T n fCg)[ �0 for every �

0 � �(C):

5 When re�ning theories using a downward operator, we can safely discard any the-

ory not covering all positives, since downward re�nements are specialisations and
therefore will not be able to extend their coverage.

6 There can be several such minimal �0
� �(C).

7 together with T n fCg.
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Fig. 1. C is re�ned to Ci^Cj . Re�ning C separately toCi or Cj would spoil the coverage
of all positives, making the introduction of a new clause in the theory necessary.

However, the minimality of the re�nement steps of �T also involves a signif-

icant increase in theory size
8, which is usually not justi�ed by the examples.9

To make this observation more precise, we introduce a heuristic function for
evaluating the merit of a hypothesis:

f(T ) = pos(T ) � neg(T ) � jT j

where jT j is the size of theory T , while pos(T ) (respectively neg(T )) is the num-
ber of positive (negative) examples covered by T . (f is to be maximized. Since
all theories constructed by �

0

T cover all positives, pos(T ) = pos is a constant.)
We also introduce the notion of \compression" realized by a theory T as

k(T ) = pos(T ) � jT j:

A solution T covers no negative examples (neg(T ) = 0) and its size should

be smaller than the number of positive examples covered: jT j � pos(T ); i.e.
k(T ) � 0: (Note that the compression k(T ) is an upper bound on the merit
function f(T ) � k(T ); with equality only in the case of solutions.)

Very frequently, the unrestricted �T makes only very small10 re�nement steps
and thus only increases the size jT j without modifying the coverage pos(T ) �
neg(T ). This size increase would be justi�ed only if the coverage would be im-
proved. This is exactly what our improved �

0

T does: it tolerates a size increase
only if all the newly introduced clauses are necessary for covering all positives.

More precisely, let �0 be a minimal subset of �(C) such that (T nfCg)[�0 still
covers all positives. Then adding any additional (redundant) clause C00 2 �(C)n�0

to a re�nement T 0 = (T nfCg)[�0 of T , i.e. considering T 00 = (T nfCg)[�0[fC00g,
will not only increase the size of the resulting theory: jT 00j > jT 0j; but will also
possibly increase the number of negative examples covered neg(T 00) � neg(T 0)
(since T 00 is more general than T

0), thus leading to a theory that is worse (w.r.t.
the heuristic function) than the original re�nement: f(T 00) < f(T ):

8 which makes the resulting theories impractical in just a few re�nement steps.
9 There may be no di�erence in example coverage between (T n fCg) [ �(C) and
(T n fCg) [ �0. In other words, while the �rst theory is intensionally more general

than the second, the two theories can be extensionally equivalent.
10 small w.r.t. the generality order.



3.1 Implementing the syntactically monotonic re�nement operator

for theories

The pseudo-code below, implementing �0T (3), avoids generating all subsets of
�(C) { it never generates supersets of the minimal subsets �0. This is realized
by generating the subsets in increasing j�0j11 and by blocking the generation of
supersets of the minimal subsets covering all positives.

Subsets S0 covering all positives are never added to the candidate list L, so
we will never generate supersets of S0 from S

0
itself . However, since supersets

of S0 could also be generated from sets that di�er from S
0, we use nogoods for

avoiding the generation of such supersets.12

Compute �0T (T )

�
0

T (T ) := ;
forall C 2 T

L := [ ; ]; assume �(C) = fC1; : : : ; Cng
while L is non-empty

extract the �rst S = fi1; : : : ; ikg from L

for j = ik + 1; : : : ; n
S
0 = S [ fjg

if 6 9 nogood(S00) such that S00 � S
0 (?)

if T 0 = (T n fCg) [ fCi1; : : : ; Cikg covers all positives
add nogood(S0)
add T

0 to �
0

T (T ) % return T
0

else append S
0 to L

end if

end for

end while

end for

Instead of adding T
0 to �

0

T (T ), one could return T
0 (as a re�nement of T )

immediately and rely on backtracking to obtain alternative re�nements.

For �(C) = fC1; : : : ; Cng, the above algorithm computes the subsets �
0 �

�(C) that are minimal w.r.t. set inclusion such that T 0 = (T n fCg) [ �0 covers
all positives.

For example, for �(C) = fC1; C2; C3g, if �
0

1 = fC1g and �
0

23 = fC2; C3g cover
all positives13, but �

0

2 = fC2g and �
0

3 = fC3g do not, we will consider only
the two theory re�nements corresponding to �

0

1 and �
0

23. Note that we will not
consider the re�nement �012 = fC1; C2g since it is not minimal w.r.t. set inclusion
(fC1; C2g � fC1g, which covers all positives). See Figure 2.

11 i.e. we �rst generate the re�nements for which �0 is a singleton, then those where �0

contains 2, then 3, 4, . . . clauses.
12 The nogood test (?) can be e�ciently implemented (using a tree-like representation

for nogood sets).
13 together with T n fCg:
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Fig. 2. Minimal subsets covering all
positives.
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Fig. 3. C1 is re�ned to C 0

1 for avoid-

ing the negatives �. C 0

2 is introduced

to cover the remaining positives +2, but
only when it is needed (i.e. as a re�ne-

ment of C1, and not before re�ning C1).

Intuitively, considering fC1; C2g (i.e. C1^C2) as a re�nement would amount
to considering a 2-clause theory containing C1 even if C1 covers by itself all
positives. Now, it may be that a second clause C0

2 will be needed later to preserve
the coverage of all positives (after having re�ned C1 to a more speci�c C

0

1 for
avoiding negatives). However, this C0

2 need not be introduced now { it will be
when needed (e.g. when re�ning C1 to C

0

1 ^C
0

2 { see Figure 3).

Testing all subsets �0 � �(C) for minimalitymay pose e�ciency problems due
to the large number of such subsets. However, due to the syntactic monotonicity
of �0T , the size of theories increases during re�nement, while their compression
decreases monotonically. This imposes an upper bound on the size of subsets
�
0 that should be considered. More precisely, when replacing clause C by some
subset �0 � �(C) with n clauses, jT 0j = jT j�jCj+n(jCj+1); since the clauses C0 2
�
0 are obtained from C by adding a literal. For obtaining a positive compression:
0 � k(T 0) = pos � jT 0j = k(T ) + jCj � n(jCj+ 1);

n �
k(T )� k(T 0) + jCj

jCj+ 1
(4)

The upper bound (4) on the size of subsets �0 we have to consider is not very
useful in the case of high compression rates. However, we can use it in a more so-
phisticated implementation in which the subsets �0 are subject to lazy generation

(instead of being generated all at once).

More precisely, we can �rst construct only the re�nements �0 that guarantee
a given (high) compression rate K (k(T 0) = K)14 and then gradually decrease
K until a solution is found.

Example 1. For simplicity, we consider a propositional example, where we can
simply represent positive and negative examples for some predicate p as:

+a; b + a; c � a � c

14 using (4) to impose an upper bound on the size n of the subsets �0.



(+a; b denotes a positive example e1, which would be represented in the usual
ILP notation as p(e1): a(e1): b(e1):
+a; c represents p(e2): a(e2): c(e2):

while �a denotes the negative example :p(e3): a(e3):)

Figure 4 depicts the associated re�nement tree for the starting theory T0 =
fp  g. The re�nements of clause p  are �(p  ) = fp  a; p  b; p  cg
and the minimal subsets covering all positives make up the theory re�nements:
T1 = fp ag and T2 = fp b; p cg.

Then, when re�ning T1 with �(p  a) = fp  a; b; p  a; cg, both re�ne-
ments are needed for covering all positives thus producing theory T3 (which is a
solution).

On the other hand, re�ning T2 produces T4 and T5, only T4 being a solution.

T3:
p a; b

p a; c

T1: p a

T4:
p b

p c;a

T2:
p b

p c

T5:
p b; a

p c

T0: p 

"
"
"
""bb

b
bb

!!
!!

!!!
PPPPPP

Fig. 4. A re�nement tree

The search algorithm presented below uses a list of hypotheses (Theories),
initialized with a starting theory (for example the one containing the empty
clause).

solution search

Theories : = [f2g]
while Theories is nonempty

extract T from Theories (according to heuristic f)
if T is a solution then return T

add �
0

T (T ) to Theories

end while

The re�nement operator �(C) for clauses used by �
0

T works by adding to
clause C either

{ a positive literal p(X1; : : : ; Xn) (with new and distinct variables) involving
a target predicate p (in the case of Horn clauses, this is allowed only if C
contains no other positive literal), or

{ a negative literal p(X1; : : : ; Xn) (with new and distinct variables) involving
either a target predicate or a predicate from the background theory, or



{ a negative equality literal Xi = Xj involving variables Xi and Xj from C

(for properness, Xi = Xj should not be deducible from the equality literals
of C).

4 Reducing redundancies

Although �
0

T eliminates certain redundancies of �T , other redundancies still re-
main. These are mainly due to the commutativity of the re�nement operations
(such as adding a literal to a clause), since all the permutations of a set of op-
erations will now produce the same hypothesis. As shown in [1, 2], eliminating
such redundancies amounts to destroying the commutativity of the re�nement
operations. This is equivalent to imposing a traversal discipline in the space of
hypotheses and can be done by using order relations on literals, variables and
clauses. As already hinted in the Introduction, a 
exible re�nement operator
requires dynamic order relations (constructed at search time, rather than pre-
determined). [2] deals with such 
exible re�nement operators for clauses. In
the following, we show how to construct 
exible re�nement operators for theo-

ries by extending the technique from [2]. Note that a straight-forward extension
of the technique from [2] to theories would introduce order relations not only
on variables and literals, but also on clauses. However, this would only allow
constructing theories clause by clause, just like in implemented systems using
re�nement operators for clauses (like Progol or FOIL).

Example 2. Consider the 2 clause theory T = fC1; C2g initially with C1 = a,
C2 = d, which we want to re�ne �rst by adding literal b to C1, then e to C2 and
�nally c to C1.

If we have separate (dynamic) literal and clause orderings, then adding b to
C1 induces the literal ordering a < b, then adding e to C2 induces not only d < e,
but also the clause ordering C1 < C2. The latter ordering will now disallow a
further re�nement of C1, such as adding c to C1. (We could have obtained the
desired re�nement only if all re�nements of C1, i.e. adding b and c, would have
preceded the re�nements of C2. This reduces the 
exibility of the re�nement
operator for theories and in fact we re-obtain the usual clause by clause covering
approach.)

To increase the 
exibility of the theory re�nement operator, we shall replace
the two separate literal and clause orderings by a single order relation on the
literals from all clauses. Thus, instead of ordering the literals within clauses and
subsequently the clauses in their entirety, we introduce a �ner grained ordering
between the literals of all clauses.

More precisely, the ordering will involve literal occurrences of the formL:id(C)
(representing literal L from clause C). Distinguishing the occurrences of the same
literal in di�erent clauses increases the 
exibility of the resulting re�nement op-
erator. For example, re�ning T = fC1; C2g with C1 = a, C2 = b by adding b

to C1 and a to C2 wouldn't be allowed if we hadn't made the above-mentioned



distinction (since an inconsistent ordering a < b, b < a would result). With lit-
eral occurrences, we obtain the consistent ordering a:1 < b:1, b:2 < b:1, b:1 < a:2
(where id(C1) = 1, id(C2) = 2).

However, this simple approach using literal occurrences L:id(C) only works
whenever clauses are not \split" and therefore have a well-de�ned identity id(C),
one that does not change under re�nement (as for example in HYPER). We will
therefore show in the following how the redundancy of HYPER's re�nement
operator (1) can be reduced by adding an ordering `<' between literal occur-
rences L:id(C) and one `�id(C)' between variable occurrences Xi. (See [2] for a
justi�cation of the treatment of the variable ordering.)

The following re�nement operator ~�H eliminates not only the redundancies
brought about by the commutativity of the re�nements of a given clause (as
in [2]), but also the redundancies arising from the commutativity of re�nement
operations on di�erent clauses (of the theory being re�ned).15

T
0 2 ~�H (T ) i� T

0 = (T n fCg)[ fC0g for C 2 T , C
0 2 ~�(C; T ), where

C
0 2 ~�(C; T ) i� either

(1) C
0 = C [ fL(i)g for some background literal L16 that occurs i � 1 times

in C (i.e. L(1)
; : : : ; L

(i�1) 2 C) and such that adding the global constraints
L
(i)
:id(C) > T

17 preserves the consistency of the global constraint store,
vars(C0) = vars(C) [ vars(L(i)),

(where vars(L(i)) are the variables X
(i)

of L(i) = p(X
(i)
)), or

(2) C
0 = C [ fXi = Xjg with Xi; Xj 2 vars(C), such that adding the global

constraints

(a) (Xi = Xj):id(C) > T and
(b1) Xi �id(C) Xj , Xk �id(C) Xj for each Xk such that (Xi = Xk) 2 C or

(Xk = Xi) 2 C
18,

(b2) Xj �id(C) Xi, Xk �id(C) Xi for each Xk such that (Xj = Xk) 2 C or
(Xk = Xj) 2 C

preserves the consistency of the global constraint store.
vars(C0) = vars(C) n fXig if (b2) was applied,
else vars(C0) = vars(C) n fXjg.

15 Since the order of clauses is important in Prolog programs, we do not attempt

to eliminate the redundancies due to permutations of clauses (in the theory being

re�ned), such as C1 ^ C2 = C2 ^ C1. Eliminating such redundancies would involve

technical complications that are outside the scope of this paper.
16 For a literal L = p(X) with variable tuple X, we introduce a standardization for the

variables X
(i)

of the i-th occurrence L(i) = p(X
(i)
) of the literal L in some clause

(the new and distinct variables X
(i)

are the same for the i-th occurrence of L on all

alternative paths).
17 Adding L0:id(C 0) > T to the global constraint store (L0 being a literal, id(C 0) a

clause identi�er and T a theory) amounts to adding L0:id(C 0) > L:id(C) for all

C 2 T and all L 2 C (or, more practically, for all maximal L 2 C 2 T ).
18 We add Xi �id(C) Xj only if such an Xi = Xk or Xk = Xi exists in C.



In both cases, (1) and (2), id(C 0) = id(C).

~�H adds either a new ordinary literal, or a new equality literal. The order
relation on literals is constructed dynamically, as literals are added during suc-
cessive re�nements. (Of course, the consistency of the global constraint store
needs to be preserved.)

Special care has to be taken for allowing multiple occurrences of a given
background literal L in a clause C. For ensuring the compatibility of the induced
(literal and variable) orderings on the various alternative search paths, we have

to use the same variable names X
(i)

for the i-th occurrence L
(i) = p(X

(i)
) of

literal L on all paths.

Adding equalities is trickier to a certain extent due to the transitivity of
equality. First, we have to avoid the trivial redundancies that would appear if
we allowed adding Xi = Xj for Xi and Xj already belonging to the same cluster
of variables. (A cluster is a set of variables already uni�ed with each other.) We
do this by keeping in the set of variables candidates for uni�cation vars(C) just
one representative of each variable cluster.

The constraints introduced at step (2b) ensure that a variable cluster X1 =
X2 = : : : = Xn can be generated with only one sequence of re�nements of type
(2), for example X1 = X2, followed by successively adding X3; X4; : : : ; Xn to
the growing cluster.

Example 3. For the theory T = fC1; C2g, the following sequence of re�nements:

add literal a to C1, add b to C1, add c to C2, add d to C1, add e to C2,
add f to C2

produces the literal ordering: a:1 < b:1 < c:2 < d:1 < e:2 < f:2; which will
disallow the re-generation of the same theory by a permutation of the above
operations.

Reducing the redundancies of our more general �0T operator is even more
complicated, mainly because of the di�culty in assigning identities to clauses
obtained by \splitting". Due to space limitations, it will be the subject of a
separate paper.

5 Conclusions

The re�nement operator for theories �0T presented in this paper represents a �rst
step towards constructing more e�cient and 
exible ILP systems with precise
theoretical guarantees.

Its main properties are syntactical monotonicity, solution completeness and

exibility. Flexibility allows interleaving the re�nements of clauses, and thus ex-
ploiting a good search heuristic by avoiding the pitfalls of a greedy covering
algorithm. On the other hand, syntactical monotonicity is important for elimi-
nating certain annoying redundancies due to clause deletions.



We also show how to eliminate (for HYPER's re�nement operator) the re-
dundancies due to the commutativity of re�nement operations while preserving
a limited form of 
exibility.

The paper [6] also deals with theory re�nement, but the main focus is on
other aspects, such as constructing bottom theories.19 Unfortunately, the paper
has several problems, which, for lack of space, cannot be discussed here.
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