Refinement Operators can be (Weakly) Perfect

Liviu Badea and Monica Stanciu

AT Lab, Research Institute for Informatics
8-10 Averescu Blvd., Bucharest, Romania
e-mail: badea@ici.ro

Abstract. Our aim is to construct a perfect (i.e. minimal and optimal)
ILP refinement operator for hypotheses spaces bounded below by a most
specific clause and subject to syntactical restrictions in the form of in-
put/output variable declarations (like in Progol). Since unfortunately
no such optimal refinement operators exist, we settle for a weaker form
of optimality and introduce an associated weaker form of subsumption
which exactly captures a first incompleteness of Progol’s refinement op-
erator. We argue that this sort of incompleteness is not a drawback, as
it is justified by the examples and the MDL heuristic.

A second type of incompleteness of Progol (due to subtle interactions be-
tween the requirements of non-redundancy, completeness and the vari-
able dependencies) is more problematic, since it may sometimes lead
to unpredictable results. We remove this incompleteness by construct-
ing a sequence of increasingly more complex refinement operators which
eventually produces the first (weakly) perfect refinement operator for a
Progol-like ILP system.

1 Introduction

Learning logic programs from examples in Inductive Logic Programming (ILP)
involves traversing large spaces of hypotheses. Various heuristics, such as infor-
mation gain or example coverage, can be used to guide this search. A simple
search algorithm (even a complete and non-redundant one) would not do, unless
it allows for a flexible traversal of the search space, based on an external heuris-
tic. Refinement operators allow us to decouple the heuristic from the search
algorithm.

In order not to miss solutions, the refinement operator should be (weakly)
complete. In order not to revisit already visited portions of the search space it
should also be non-redundant. Such weakly complete non-redundant refinement
operators are called optimal.

Various top-down ILP systems set a lower bound (usually called most spe-
cific clause (MSC) or saturant) on the hypotheses space in order to limit its
size. Syntactical restrictions in the form of mode declarations on the predicate
arguments are also used as a declarative bias.

Devising an optimal refinement operator for a hypotheses space bounded
below by a MSC in the presence of input/output (+) variable dependencies is

not only a challenging issue given the subtle interactions of the above- men-
tioned features, but also a practically important one since refinement operators
represent the core of an ILP system.

The Progol refinement operator [4], for example, is incomplete in two ways.
First, it is incomplete w.r.t. ordinary subsumption since each literal from the
MSC has at most one corresponding literal in each hypothesis (only variabilized
subsets of the MSC are considered as hypotheses). Rather than being a draw-
back, we argue that this incompleteness is exactly the sort of behavior we would
expect. In order to make this observation precise, we introduce a weaker form
of subsumption under which the refinement operator is complete.

The second type of incompleteness (see also example 30 of [4]) is more prob-
lematic since it cannot be characterized in a clean way and since it depends on the
ordering of mode declarations and examples. In order to achieve non-redundancy
and at the same time obey the +variable dependencies imposed by the mode
declarations, Progol scans the MSC left-to-right and non-deterministically de-
cides for each literal whether to include it in (or exclude it from) the current
hypothesis. A variabilized version of the corresponding MSC literal is included in
the current hypothesis only if all its input (4) variables are preceded by suitable
output (—) variables. This approach is incomplete since it would reject a literal
l; that obtains a +variable from a literal /; that will be considered only later:

although I;,1; would constitute a valid hypothesis.

Note that a simple idea like reordering the literals in the MSC would not
help in general, since the MSC may exhibit cyclic variable dependencies while
still admitting acyclic subsets.

The following example illustrates the above-mentioned incompleteness:

:- modeh(1, p(+any, +t))? :- modeb(l, f(-any, -t))?
:- modeb(1, g(+any, +t))? :- modeb(l, h(-any, -t))?
p(l,a). p(2,a). p(3,a). :-p(4,a).

£f(1,b). f(2,b). £(3,b). £f(4,b).
g(l,a). g(2,c). g(3,c).
h(1,a). h(2,c). h(3,c). h(4,a).

As long as the mode declaration for g precedes that of h, Progol will pro-
duce a MSC p(A,B) :- £(A,C), g(A,B), h(A,B) in which the g literal cannot
obtain its +variables from h since the former precedes the latter in the MSC.
Thus Progol will miss the solution p(A,B) :- h(A,C), g(A,C) which can be
found only if we move the mode declaration for h before that of g. This type of
incompleteness may sometimes lead to unpredictable results and a reordering of
the mode declarations will not always be helpful in solving the problem.

Although Progol’s algorithm for constructing the MSC makes sure that each
+variable occurrence is preceded by a corresponding —variable, there may be
several other —variable occurrences in literals ordered after the literal containing
the +variable. These potential “future links” will be missed by Progol. In cases

of many such “future links”, the probability of the correct ordering being in the
search space is exponentially low in the number of “future links”.

For a wery small number of literals in the body and/or a small variable
depth, this incompleteness may not be too severe, especially if we order the mode
declarations appropriately. The problem becomes important for hypotheses with
a larger number of literals.

2 Refinement Operators

In order to be able to guide the search in the space of hypotheses by means of
an external heuristic, we need to construct a refinement operator. For a top-
down search, we shall deal with a downward refinement operator, i.e. one that
constructs clause specializations. In the following we will consider refinement
operators w.r.t. the subsumption ordering between clauses.

Definition 1. Clause C subsumes clause D, C' = D iff there exists a substitution
6 such that C6 C D (the clauses being viewed as sets of literals). C' properly
subsumes D, C' = D iff C' > D and D # C. C and D are subsume-equivalent
C~DifC>Dand D> C.

Lemma 2. [5] For a most general literal L w.r.t. clause C' (one with new and
distinct variables), C properly subsumes C'U{L} iff L is incompatible with all
literals in C (i.e. it has a different predicate symbol).

The somewhat subtle and counter-intuitive properties of subsumption are
due to the incompatibility of the induced subsumption-equivalence relation ~
with the elementary operations of a refinement operator, such as adding a literal
or performing a substitution.

Remark. Note that not all reduced specializations D of a reduced clause C' can be
obtained just by adding one literal or by making a simple substitution {X/Y}. It
may be necessary to add several literals and make several simple substitutions in
one refinement step, since each of these elementary operations applied separately
would just produce a clause that is subsume- equivalent with C.

Definition 3. p is a (downward) refinement operator iff for all clauses C, p
produces only specializations of C: p(C) C {D | C = D}.

Definition 4. A refinement operator p is called

(locally) finite iff p(C) is finite and computable for all C'.

— proper iff for all C, p(C) contains no D ~ C.

— complete iff for all C and D, C > D = 3E € p*(C) such that E ~ D.

— weakly complete iff p*(O) = the entire set of clauses.

— non-redundant iff for all Cy,Cy and D, D € p*(C1) N p*(Cy) = Cy € p*(Cs)
or Cy € p*(C’l).

— ideal iff it is locally finite, proper and complete.

— optimal iff it is locally finite, non-redundant and weakly complete.

— minimal iff for all C, p(C) contains only downward covers' and all its ele-
ments are incomparable (D, Dy € p(C) = D1 ¥ Dy and Ds # D»).

— (downward) cover set iff p(C) is a maximal set of non- equivalent downward

covers of C.

perfect iff it is minimal and optimal.

Theorem 5. [6]. For a language containing at least one predicate symbol of arity
> 2, there exist no ideal (downward) refinement operators.

The nonexistence of ideal refinement operators is due to the incompleteness
of the (unique) cover set of a clause C, because of uncovered infinite ascending
chains C = ... = Eix1 = E; = E;—1 = ... = E; (for which there exists no
maximal element E = F; for all i, such that C' > E). Indeed, since none of the
E; can be a downward cover of C';, C' cannot have a complete downward cover
set.

Every ideal refinement operator p determines a finite and complete downward
cover set p°(C) C p(C), obtained from p(C) by removing all E covered by some
Dep(C):D*rE.

3 Ideal versus optimal refinement operators

The subsumption lattice of hypotheses is far from being tree-like: a given clause
D can be reachable from several incomparable hypotheses Cy,Cs,

Theorem 6. A refinement operator cannot be both complete (a feature of ideal
operators) and non-redundant (a feature of optimal operators).

Proposition7. For each ideal refinement operator p we can construct an opti-
mal refinement operator p(o).

pl9) is obtained from p such that for D € p(C1) N ...N p(Cy) we have 3i.D €
p(C;) and Vj # i.D & p2(C;).

The efficiency of ideal and respectively optimal refinement operators depends
on the density of solutions in the search space. Ideal operators are preferable for
search spaces with dense solutions, for which almost any refinement path leads
to a solution. In such cases, an optimal (non-redundant) operator might get quite
close to a solution C but could backtrack just before finding it for reasons of non-
redundancy (for example because C is scheduled to be visited on a different path
and thus it avoids revisiting it). Despite this problem, the solutions are dense,
so an optimal operator would not behave too badly, after all.

On the other hand, optimal operators are preferable for search spaces with
rare solutions, case in which a significant portion of the search space would be
traversed and any redundancies in the search due to an ideal operator would be
very time consuming.

! D is a downward cover of C iff C > D and no E satisfies C = E > D.

Thus, unless we are dealing with a hypotheses space with a very high solu-
tion density, we shall prefer an optimal operator over an ideal one. However, in
practice we shall proceed by first constructing an ideal refinement operator p
and only subsequently modifying it, as in proposition 7, to produce an optimal
operator p(").

4 Refinement operators for hypotheses spaces bounded
below by a MSC

Limiting the hypotheses space below by a most specific (bottom) clause L leads
to a more efficient search.? This strategy has proven successful in state-of-the-
art systems like Progol, which search the space of hypotheses C' between the
most general clause (for example the empty clause O) and the most specific
clause 1: O = C = L (for efficiency reasons, the generality ordering employed
is subsumption rather than full logical implication).

Formalizing Progol’s behavior amounts to considering hypotheses spaces con-
sisting of clause-substitution pairs C' = (cl(C), 0, (C)) such that cl(C)0.(C) C
L. (For simplicity, we shall identify in the following cl(C) with C.3)

The following refinement operator is a generalization of Laird’s operator in
the case of hypotheses spaces bounded below by a MSC L.

De piL)(C) iff either

(1) D = CU{L'} with L € L (L' denotes a literal with the same predicate
symbol as L, but with new and distinct variables), or
(2) D =C{X;/X,;} with {X;/A,X;/A} C0,(C).

Note that in (2) we unify only variables X;, X; corresponding to the same vari-
able A from L (since otherwise we would obtain a clause more specific than
1).
p(f) is finite, complete, but improper. The lack of properness is due to the
possibility of selecting a given literal L € L several times in the current hypoth-
esis (using (1)). It can be easily shown that the nonexistence result 5 for ideal
refinement operators can be restated in the case of hypotheses spaces bounded
below by a MSC. Therefore, we cannot hope to convert p(f) (which is improper)
to an ideal operator.

On the other hand, the Progol implementation uses a slightly weaker refine-
ment operator that considers each literal L € L for selection only once. This
weaker operator is no longer complete, anyway not w.r.t. ordinary subsumption.

For example, if L = ... + p(A4,A), then the weaker refinement operator
would construct only hypotheses with a single p-literal, such as Hy = ... <

2 In the following, we restrict ourselves for simplicity to refinement operators for flat-
tened definite Horn clauses.

% In general, for a given clause C there can be several distinct substitutions 6; such that
CH; C L. Viewing the various clause-substitution pairs (C, 6;) as distinct hypotheses
amounts to distinguishing the L -literals associated to each of the literals of C.

p(X,X),or Hy = ...+ p(X,Y), but it will never consider hypotheses with mul-
tiple p-literals, like H3 = ... + p(X,Y),p(Y, X),or Hy = ... < p(X,Y),p(Y, 2),
p(Z, W), etc. since such hypotheses could be constructed only if we would allow
selecting (suitably variabilized versions of) the literal p(A, A) several times (and
not just once, as in Progol). Note that Hj is strictly more general (w.r.t. sub-

sumption) than Hp, but also strictly more specific than Ha: Hy > - Hi.
Since Hj is not even in the search space, Progol’s refinement operator is, in a
way, incomplete. This incompleteness is due to the fact that L is scanned only
once for literal selection. It could be easily bridged by scanning L repeatedly,
so that a given literal can be selected several times. Unfortunately, in principle
we cannot bound the number of traversals, although in practice we can set an
upper bound.

On the other hand, looking at the above-mentioned incompleteness more
carefully, we are led to the idea that it is somehow justified by the examples and
the MDL principle.

In our previous example, if p(A, A) is the only p-literal in L, then it may be
that something like: p(a,a). p(b,b). p(c,c). [ex] are the only examples. In
any case, we could not have had examples like p(a,b). p(b,a). which would
have generated L = ...+ p(A4, B),p(B, A) instead of L = ... < p(A4, A). Now,
it seems reasonable to assume that a hypothesislike H = ... < p(X,Y), p(Y, X),
although logically consistent with the examples [ex], is not “required” by them.
So, although Progol generally returns the most general hypothesis consistent
with the examples, in the case it has to choose between hypotheses with multiple
occurrences of the same literal from L, it behaves as if it would always prefer
the more specific one (the one with just one occurrence). A justification of this
behavior could be that the more general hypotheses are not “required” by the
examples. Also, the more general hypotheses (with several occurrences of some
literal from 1) are always longer (while covering the same number of examples)
and thus will be discarded by the MDL principle anyway.

As we have already mentioned, the subtle properties of subsumption are due
to the possibility of clauses with more literals being more general than clauses
with fewer literals. This is only possible in the case of multiple occurrences of
literals with the same predicate symbol (as for example in uncovered infinite
ascending chains).

In the following, we introduce a weaker form of subsumption, which exactly
captures Progol’s behavior by disallowing substitutions that identify literals.

Definition 8. Clause C' weakly-subsumes clause D relative to 1L, C' =, D iff
C6 C D for some substitution 8 that does not identify literals (i.e. for which there
are no literals Ly, Lo € C such that L1 = L»#) and such that 6, (D)o = 6, (C).

Note that although in the above example Hs = H; w.r.t. (ordinary) subsump-
tion, they become incomparable w.r.t. weak subsumption because the substitu-
tion § = {Y/X} that ensures the subsumption relationship Hs >~ H; identifies
the literals p(X,Y") and p(Y, X).

4 TIt’s search however, is complete if we use the MDL heuristic. See below.

Although Progol’s refinement operator is in a way incomplete w.r.t. ordinary
subsumption, it is complete w.r.t. weak subsumption. Disallowing substitutions
that identify literals entails the following properties of weak subsumption.

Proposition9. If C' =, D then |C| < |D| (where |C| is the length of the clause
C, i.e. the number of its literals).

Lemma 10. (a) In the space of clauses ordered by weak subsumption there ex-
ist no infinite ascending chains (and therefore no uncovered infinite ascending
chains).

(b) there ezist no uncovered infinite descending chains.

Lemma 10(a) implies the existence of complete downward cover sets, which
can play the role of ideal operators for weak subsumption.

A form of subsumption even weaker than weak subsumption is subsumption
under object identity [1]: C =or D iff C8 C D for some substitution 6 that
does not unify variables of C'. For example, p(X,Y") #or p(X, X), showing that
subsumption under object identity is too weak for our purposes.

A form of subsumption slightly stronger than weak subsumption (but still
weaker than ordinary subsumption) is “non-decreasing” subsumption: C =np D
iff C8 C D and |C| < |D|. (Such a substitution # can identify literals of C, but
other literals have to be left out when going from C to D to ensure |C| < |D|. This
leads to somewhat cumbersome properties of “non-decreasing” subsumption.)

Concluding, we have the following chain of increasingly stronger forms of
subsumption: C =or D= C >, D =C>yxp D= C = D.

We have seen that Laird’s operator p(LL) is locally finite, complete, but im-
proper and that it cannot be converted to an ideal operator w.r.t. subsumption.
However, it can be converted to an ideal operator w.r.t. weak subsumption by
selecting each literal L € L at most once:

De p(j)(C) iff either

(1) D=CU{L'} with L € L\ CO,(C) (L' being L with new and distinct
variables), or
(2) D =C{X;/X,;} with {X;/A,X;/A} C0,(C).

Since literals from L are selected only once, p(j) turns out proper, and al-
though it looses completeness w.r.t. ordinary subsumption, it is still complete
w.r.t. weak subsumption.

4.1 From ideal to optimal refinement operators

We have already seen (theorem 6) that, due to completeness, ideal refinement
operators cannot be non-redundant and therefore optimal. As already argued
in section 3, non-redundancy is extremely important for efficiency. We shall

therefore transform the ideal refinement operator p(j) to an optimal operator

p(jo) by replacing the stronger requirement of completeness with the weaker

one of weak completeness. Non-redundancy is achieved (like in proposition 7)
by assigning a successor D € p(j)(C’i) Nn...N p(j)(C’n) to one and only one of
its predecessors C;: D € p(jo)(C’i) and Vj # i.D ¢ p(jo) (C;). The refinement
graph of such a non-redundant operator becomes tree-like. If the operator is
additionally weakly complete, then every element in the search space can be
reached through exactly one refinement chain.

The essential cause for the redundancy of a refinement operator (like pf)) is
the commutativity of the operations of the operator (such as literal addition (1)

and elementary substitution (2) in the case of p(j)). For example, D' U{L;, Lo}
can be reached both from D" U{L,} by adding L, and from D'U{L;} by adding
Ly. This redundancy is due to the commutativity of the operations of adding
literal Ly and literal Ly respectively. A similar phenomenon turns up in the case
of substitutions.

The assignment of D to one of its successors C; is largely arbitrary, but has
to be done for ensuring non-redundancy. This can be achieved by imposing an
ordering on the literals in 1 and making the selection decisions for the literals
L; € 1 in the given order. We also impose an ordering on the variable occurrences
in | and make the unification decisions for these variable occurrences in the given
order. Finally, we have to make sure that literal additions (1) do not commute
with elementary substitutions (2). This is achieved by allowing only substitutions
involving newly introduced (“fresh”) variables (the substitutions involving “old”
variables having been performed already).

Optimal refinement operators have been introduced in [2] for the system
CLAUDIEN. However, the refinement operator of CLAUDIEN is optimal only w.r.t.
literal selection (which makes the problem a lot easier since variabilizations are
not considered). One could simulate variabilizations by using explicit equality
literals in the DLAB templates, but the resulting algorithm is no longer optimal
since the transitivity of equality is not taken into account. For example, in case
of a template containing ... + [X =Y, X = ZY = Z], the algorithm would
generate the following equivalent clauses: ...+ X =Y, X =Z and ... + X =
Y)Y =2Z7.

In the following, we construct an optimal operator p(jo) (w.r.t. weak sub-
sumption) associated to the ideal operator p(j). We start by assuming an order-
ing of the literals Ly, € L: Ly, precedes L; in this ordering iff ¥ < [. This ordering
will be used to order the selection decisions for the literals of 1: we will not
consider selecting a literal Ly if a decision for L;, [> k has already been made
(we shall call this rule the ‘literal rule’).

The ordering of the selection decisions for literals also induces an ordering
on the variable occurrences® in L: X; precedes X in this ordering (i < j) iff X;
is a variable occurrence in a literal selected before the literal containing X, or
X; precedes X in the same literal.

To achieve non-redundancy, we will impose an order in which the substi-

® To each argument of each literal of | we assign a new and distinct variable X;
(denoting a variable occurrence).

tutions are to be performed. Namely, we shall disallow substitutions {X;/X;},
i < j if some X with & > j had already been involved in a previous substi-
tution {X;/X;} (we shall refer to this rule as the ‘substitution rule’). Roughly
speaking, we make substitutions in increasing order of the variables involved.
This ensures the nonredundancy of the operation of making substitutions.
Having operators for selecting literals and making substitutions that are non-
redundant if taken separately, does not ensure a non-redundant refinement oper-
ator when the two operators are combined: we also have to make sure that literal
additions (1) and elementary substitutions (2) do not commute. For example,

if L =...+ p(4,A),q(B), the clause ... + p(X,X),q(Z) could be obtained
either by adding the literal ¢(Z) to C; = ... + p(X, X) or by making the sub-
stitution {Y/X} in Cy = ... « p(X,Y),q(Z). The latter operation should be

disallowed since it involves no “fresh” variables (assuming that ¢(Z) was the last
literal added, Z is the only “fresh” variable).

In general, we shall allow only substitutions involving at least a “fresh” vari-
able (we shall call this rule the ‘fresh variables rule’). The set of “fresh” variables
is initialized when adding a new literal L with the variables of L. Variables in-
volved in subsequent substitutions are removed from the list of “fresh” variables.
Substitutions involving no fresh variables are assumed to have already been tried
on the ancestors of the current clause and are therefore disallowed.

The three rules above (the literal, substitution and fresh variables rules) are
sufficient to turn pﬂ}) into an optimal operator w.r.t. weak subsumption. How-
ever, the substitution rule forces us to explicitly work with variable occurrences,
instead of just working with the substitutions 8 (C') (if X; and X}, are variable
occurrences, then the substitution {X/X;} would eliminate X; when working
just with substitutions, and later on we wouldn’t be able to interdict a substi-
tution {X;/X;} for j < k because we would no longer have Xy).

Fortunately, it is possible to find a more elegant formulation of the substitu-
tion and fresh variable rules combined. For each clause C, we shall keep a list
of fresh substitutions F(C) that is initialized with 6, (L) when adding a new
literal L. As before, we shall allow only substitutions {X;/X;} involving a fresh
variable X;. But we eliminate from F(C) not just X;/A, but all X;/B with
k < j (‘prefix deletion rule’). This ensures that after performing a substitution
of X;, no substitution involving a “smaller” X} will ever be attempted. This
is essentially the substitution rule in disguise, only that now we can deal with
substitutions instead of a more cumbersome representation that uses variable
occurrences.

The optimal refinement operator can thus be defined as:

De p(jo)(C) iff either

(1) D =CU{L'} with L € L \ prefix, (C8,(C)), where prefix, (C) = {L; €
1 | 3L; € C such that ¢ < j} and L' is L with new and distinct variables.
0, (D)=06,(C)ub, (L"), F(D)=6,(L"), or

(2) D=C{X;/X;} with i < j, {X;/A,X,;/A} C0.(C) and X;/A € F(C).
0.(D) =0.(C)U{X;/Xi}, F(D) = F(C)\{Xi/B € F(C) | k < j}

Ezample 1. Let L =p(A, A, A, A) and Cy = p(X1, Xs, X3,X4), 0, (C1) = {X1/A4,
Xo/A, Xs5/A, X4/A}, F(C1) = {X1/A,X2/A,X3/A, X4/A}. The substitution

{X3/X1} eliminates the entire prefix {X17A,X2/A,X3/A} from F(Cy): Cy =
Ci{Xs/X1} = p(Xy, X5, X1, X4), 0.(C2) = {X1/A, X2/A, X4/A}, F(Co) =
{X4/A}. Now, only the substitutions involving X4 are allowed for Cs.

5 Refinement operators for clauses with variable
dependencies

Most implemented ILP systems restrict the search space by providing mode
declarations that impose constraints on the types of the variables. Also, variables
are declared as either input (+) or output (—). In this setting, valid clauses
(clauses verifying the mode declarations) are ordered sets of literals such that
every input variable +X in some literal L; is preceded by a literal L; containing
a corresponding output variable —X .6 These variable dependencies induced by
the mode declarations affect a refinement operator for an unrestricted language
(like p(jo)), since now not all refinements according to the unrestricted p(jo) are

valid clauses. Nevertheless, we can use p(jo) to construct an optimal refinement

operator p(jo)(i) for clauses with +variable dependencies by repeatedly using the

“unrestricted” p(jo) to generate refinements until a valid refinement is obtained.

One-step refinements w.r.t. p(jo)(i) can thus be multi-step refinements w.r.t.

p(jo) (all intermediate steps being necessarily invalid).
p(?H(C) = {Dn | D1 € p19(C), Dz € p7(D1),..., Dy € pI” (D 1)
such that D, is valid but D;,...,D,_ are invalid}.

(Here, a clause C is called valid iff it admits an ordering that satisfies the mode
declarations. Such an ordering can easily be obtained with a kind of topological
sort.)

Note that p(jo)(i) is optimal, but non-minimal, since it may add more than
one literal in one refinement step. For example, if L = ... < p(+A4),q(—A4),
it would generate both C; = ... ¢ ¢(—=X),p(+X) and C2 = ... < ¢(—X) as
one-step refinements of O, whereas it may seem more natural to view C; as a
one-step refinement of Co (rather than of O).

To obtain a minimal optimal (i.e. a perfect) refinement operator, we need
to postpone the choice of unselectable (variabilizations of) literals until they
become selectable, instead of making a selection decision right away. We also
have to make sure that selectable literals obtain all their +variables from previous
—variables by making all the corresponding substitutions in one refinement step.

(1) add a new literal (to the right of all selected ones) and link all its +variables
according to “old” substitutions

5 This is true for literals in the body of the clause. Input variables in the head of
the clause behave exactly like output variables of body literals. To simplify the
presentation, we shall not explicitly refer to the head literal.

(2) make a substitution (involving at least a “fresh” variable)
(3) wake-up a previously unselectable literal (to the left of the rightmost selected
literal).

If several literals can be added at a given time, we shall add them in the
order induced by L. In other words, we shall disallow adding a literal L, < L,
after adding L; if Lo was selectable even before adding L, (since otherwise we
would redundantly generate C, L;, Ly both from C,L; by adding Ls and from
C, Ly by adding Ly).

On the other hand, the multiple +variables of several literals can be linked to

the same —variable (“source”). For example, if L = ... + p;(+A4), p2(+A4),q(—A),
then p(0d0) = {C1}, p(C1) = {C2,C3}, p(C2) = {C4} and p(C3) = p(Cs) =
0, where C; = ... + q(=X), Cy = ... + q(-X),p1(+X), C3 = ... «
g(=X),p2(+X), Cs = ... < q(=X),p1(+X),p2(+X). Note that both p; (+X)

and p2(4+X) use the same “source” g(—X). Also note that adding ps(+X) to
C, is allowed since po > p;, while adding p; (+X) to Cs is disallowed because
p1 < pa2 was selectable even before adding p» (to Cy).

Using the notation 87 (L") (and respectively 87 (L") for the substitutions of
+(—)variables of 8, (L'), we obtain the following perfect (minimal” and optimal)

refinement operator p(j()i) for clauses with variable dependencies.

D € plM*¥)(C) iff either

(1) D=CU{L'} with L € L\ prefix, (C8,(C)), where L' is L with new and
distinct —variables®, and +variables such that 87 (L") C 6, (D) = 6, (C) U
6, (L.
F(D) =07 (L")\{X/B €07 (L") | k < j for some X;/A € 07 (L")ub] (L")},
or

(2) D =C{X;/X;} with i < j, {X;/A,X;/A} C0,(C) and X;/A € F(C).
6.(D) = 6.(C) U{X;/X:}, F(D) = F(C)\ {X4/B € F(C) | k < j}, on

(3) D = CU{L'} with L € prefix, (C0,.(C)) \ C8.(C), where L' is L with
new and distinct —variables”, and +variables such that 87 (L') C 6, (D) =
6. (C)u o (L"), and for all L; € C such that L; > L', first; (C) U {L'} is
invalid, where first; (C) are the literals added to C' before L;.
F(D) =0 (L")\{Xy/B € (L')| k< j for some X;/A € 6T (L")Uo (L")}

Observe that substitutions (2) involving —variables (controlled by F) are to
be performed right away when F allows it, because later additions of woken-
up literals will reset F and make those substitutions impossible. On the other
hand, we can always wake-up literals (by solving their +variables) (3) after

" The refinement operator of Markus is not minimal (no description of this operator is
available in [3], but see his footnote 4). As far as we know, our refinement operator
is the first minimal and optimal one (w.r.t. weak subsumption).

 The —variables of L' are preceded by all —variables of C' in our variable ordering.
(This variable ordering is dynamical since it is induced by the selection decisions for
literals.)

making those substitutions. In other words, we firmly establish our “sources”
(i.e. —variables) before waking-up the “consumers” (i.e. +variables).

The following example illustrates the functioning of p(h)i).
Ezample 2. For L = ... < r(+B),q1(+4,—B),q(+A,—B),p(—A4), p(O) =
{C1}7 () - {CQ)C?)}: () - {04)C5}> () { }7 () = {07})
p(Cs) = {Cs,Cy}, p(Cr) = {Cio}, p(Cs) = p(Cs) = p(Cy) = p(C1o) = B, where
Cs = ... p(=X), @2(+X,-Y) Ci= ... e p(=X), @ (+X, =Y, r(+Y)
Cs=...+p(=X),q1(+X,-Y),2(+X,-Y') Cs = ... + p(—=X),q2(+X, =Y),r(+Y)
Cr=...< p(=X),q1(+X,-Y),r(+Y), g2(+X, -Y")
Cs=... p(_X)7q1(+X7 _Y)7q2(+X7 _Y)
Co=...¢ p(_X)7q1(+Xa _Y)7q2(+X7 YI)7T(+Y,)
Cio=...+ p(—=X),q1(+X,-Y),2(+X, =Y), r(+Y).

Note that Cio & p(Cs) because go > r in L and first,, (Cs) U {r(+Y)} =

CrU{r(+Y)} = C4 is valid, thereby violating the condition of step (3). In other
words, we cannot wake up r(+Y) in Cg because it was already selectable in Cy
(otherwise we would obtain the redundancy Cio € p(C7) N p(Cs)). For similar
reasons, we don’t have C7 € p(Cs),Cs € p(C3) or Cy € p(Cp).

On the other hand, Cip € p(Cy) because the substitution {Y'/Y} in Cy is
disallowed by F(Cy) = 0 (the last literal added, r(+Y"), having no —variables).

Note that the incompleteness of Progol’s refinement operator (which applies
only steps (1) and (2)) is due to obtaining the substitutions of +variables only
from —variables of already selected literals, whereas they could be obtained
from —variables of literals that will be selected in the future (as in step (3)).
For example, if 1L = ... « p(—A),q(+A),r(—A), then Progol’s refinement of
C = ... + p(—X) will miss the clause D = ... + p(—X),r(-=Y),q(+Y) in
which ¢ obtains its +Y from r.

We have implemented the refinement operators described in this paper and
plan to use them as a component in a full ILP system.

References

1. Esposito F., A. Laterza, D. Malerba, G. Semeraro. Refinement of Datalog Programs.
Workshop on Data Mining and ILP, Bari 1996.

2. De Raedt L., M. Bruynooghe. A theory of clausal discovery. IJCAI-93, 1058-1063.

3. Grobelnik M. Induction of Prolog programs with Markus. LOPSTR’93, 57-63.

4. Muggleton S. Inverse entailment and Progol. New Generation Computing Journal,
13:245-286, 1995.

5. van der Laag P. An Analysis of Refinement Operators in ILP. PhD Thesis, Tinber-
gen Inst. Res. Series 102, 1995.

6. van der Laag P., S.H. Nienhuys-Cheng. Ezistence and Nonezistence of Complete
Refinement Operators. ECML-94, 307-322.

This article was processed using the ITEX macro package with LLNCS style

