
Abductive Partial Order Planning with Dependent
Fluents

Liviu Badea, Doina Tilivea

AI Lab, National Institute for Research and Development in Informatics
8-10 Averescu Blvd., Bucharest, Romania

badea@ici.ro

Abstract. Our query planning application for system integration requires a
backward partial-order planner able to deal with non-ground plans in the pres-
ence of state constraints. While many partial-order planners exist for the case of
independent fluents, partial-order planning with dependent fluents is a signifi-
cantly more complex problem, which we tackle in an abductive event calculus
framework. We show that existing abductive procedures have non-minimality
problems that are significant especially in our planning domain and propose an
improved abductive procedure to alleviate these problems. We also describe a
general transformation from an abductive framework to Constraint Handling
Rules (CHRs), which can be used to obtain an efficient implementation.

1 Introduction and motivation

The integration of hybrid modules, components and software systems, possibly
developed by different software providers, is a notoriously difficult task, involv-
ing various extremely complex technical issues (such as distribution, different
programming languages, environments and even operating systems) as well as
conceptual problems (such as different data models, semantic mismatches, etc.).

Solving the conceptual problems requires the development of a common, ex-
plicit, declarative knowledge model of the systems to be integrated. Such a model
should be used (by a so-called mediator) not only during the development of the
integrated system, but also during runtime, when it can be manipulated by an
intelligent query planning agent to solve problems that could not have been
solved by any of the specific information sources alone and might even not have
been foreseeable by the system integrator. Since in most realistic applications,
the state of the databases or of the procedural components changes as a problem
is being solved, we shall describe the services offered by such procedural appli-
cations and the database updates as actions.

The query planner of the mediator transforms a user query into a partially ordered
sequence of information-source specific queries, updates and calls to application inter-
faces that solve the query. The main requirements which our system integration appli-
cation imposes on the query planner are the following:
• It should be a partial-order planner in order to take advantage of the intrinsic

distributed nature of the integrated system.

• As the information content of the sources (for example databases) can be
quite large, forward propagation of the initial state of the sources is impossi-
ble in practice. We therefore need to develop a backward planner, which
would ensure minimal source accesses with maximally specific queries.

• The planner should reason with arbitrary logical constraints between state
predicates (dependent fluents).

• It should also be able to manipulate plans with variables. UCPOP-like plan-
ners can do this, but UCPOP only deals with independent fluents.

Also, although very fast general purpose planners like Graphplan and SATPLAN are
currently available, these are not usable in our system integration application, where
generating a grounding of the planning problem is inconceivable (a database may
contain an enormous number of different constants), while both SATPLAN and
Graphplan generate a grounding of the planning problem. The same holds for recent
planners based on Answer Set Programming developed in the Logic Programming
community, which use efficient propositional answer set generators, like dlv or smod-
els.

Unfortunately, there is no implemented planner available with the characteristics re-
quired by our system integration application. In this paper we describe the construc-
tion of such a planner.

The following simple example illustrates the type of problems we are dealing with.
Assume that the dean of a university plans to assign a high responsibility course (this
course being assignable only to faculty members). This can be done by applying ac-
tion assign_course having effect course_assigned and no explicit preconditions. As-
sume there exist constraints, such as that this course cannot be assigned to a person
who is not a professor

← holds(course_assigned, T), holds(¬professor, T) (1)
or who is not employed by the university

← holds(course_assigned, T), holds(¬employed, T) (2)
Three additional actions can be used to achieve the final goal:

• hire (with precondition ¬employed and effects faculty and ¬professor) hires a
person that is not registered in the personnel database as employed (this per-
son may not be directly hired as a professor),

• promote (with precondition ¬professor and effect professor) which promotes a
non-professor to the position of professor,

• register (with precondition ¬employed and effect employed) which registers a
person as being employed in the database of the personnel department.

h a_ c

p r

r

finin i
¬e

¬e

¬p
p

c

f
f

e

The final goal holds(course_assigned,T), holds(faculty,T) can be achieved by the par-
tial-order plan (constructed by our algorithm) presented in the Figure above. Double

arrows denote protection intervals not_clipped(Ti, F, Tf), while simple arrows are plain
ordering constraints. Note that state constraints induce implicit preconditions as well
as ordering constraints and protection intervals. For example, the ordering constraints
r < a_c and pr < a_c have been posted to prevent the activation of the state constraints
(2) and (1) respectively.

2 Problems with abductive procedures

Partial-order planning can be viewed as abductive planning in the Event Calculus
[7]. Considering the fact that there are many partial-order planners for independ-
ent fluents, and since adding state constraints to an Event Calculus action specifi-
cation seems straight-forward (see (8) below), it might seem that it should be easy
to develop a partial-order planner dealing with dependent fluents.1 This impres-
sion is however misleading: integrity constraints represent a significant compli-
cation. Intuitively, fluent dependencies seriously complicate the detection of
‘threats’. As far as we know, there are no implemented sound and complete par-
tial-order planners able to deal with non-ground plans (i.e. plans with existen-
tially quantified variables) and dependent fluents exist.2 (Dependent fluents are
fluents subject to integrity constraints. As usual, integrity constraints may have
universally quantified variables.)

In the following we illustrate problems faced by existing abductive procedures, es-
pecially in our planning domain.

We start with the following (simplified3) Abductive Logic Programming (ALP)
specification of the Event Calculus with dependent fluents:

holds(F,T) ← starts(F,T0), T0<T, not clipped(T0,F,T) (3)
clipped(T0,F,T) ← starts(¬F,T1), T0<T1, T1<T (4)
starts(F,0) ← initially(F) (5)P

starts(F,T) ← initiates(A,F), happens(A,T) (6)
← happens(A,T), precondition(A,F), not holds(F,T) (7)I ← holds(F1,T), …, holds(Fn,T) (8)

Abducibles A={happens}
Query: ?- holds(Fi,Ti), …, holds(Fj,Tj), … Ti<Tj, …

where P are program clauses, while I are integrity constraints. A denotes actions,
T time points and F fluent literals, i.e. (negated) atoms. starts(F,T) means that
fluent F becomes true at T, while starts(¬F,T) means that F is terminated at T.
Direct effects are given by initiates, while preconditions are given by precondition.

1 Some implementations (including UCPOP) distinguish between primitive and derived fluents.
(Primitive fluents are assumed independent and actions cannot have derived fluents as effects.)
This is a simple form of ramification – the primitive fluents are still independent (state con-
straints are not allowed).

2 For example, the planner of [7] is unsound in the presence of state constraints (see the last
example in section 6 of [7]). [1] has non-minimality problems (see below) and we haven’t been
able to use it for dependent fluents.

3 More complicated action languages can be easily incorporated.

(8) represents a problem-dependent integrity constraint involving fluents F1, …,
Fn.

A purely backward abductive procedure (like ACLP [4] or SLDNFA [2]) typically
faces problems in recognizing that an abducible selected for solving one subgoal also
solves a second subgoal. If the second subgoal can be achieved in several ways, the
first solution returned by the backward abductive procedure might be non-minimal,
since it might reachieve an already achieved goal. For example, consider the fol-
lowing ALP P = {p ← a, q ← b, q ← a} with a, b abducibles and the query ?- p, q.
For solving the first subgoal, p, the abductive procedure will abduce a. Then, when
trying to solve q, it will abduce b, not realizing that q has already been solved by as-
suming a. (Both ACLP and SLDNFA have this problem, the latter even if a, b are de-
clared strong abducibles.)

This problem could be solved by forward propagation of a to q: a ⇒ q. Now, when
trying to solve q, the procedure would find that q has already been achieved.

Such situations occur very frequently in our planning domain, where an effect can
be achieved by several actions. For example, if {initiates(a2,f2), initiates(a1,f1), initi-
ates(a1,f2)}, then the first answer to the query ?- holds(f1,t), holds(f2,t) will be non-
minimal (both a1 and a2 will be applied).

There is a second situation in which existing abductive procedures might produce
non-minimal solutions, namely the presence of negative literals in negative goals. As
these are in fact disjunctions in disguise, existing abductive procedures will treat them
by splitting, even in cases in which the negative goal is already achieved. For exam-
ple, for the ALP P = {p ← a, q ← b, r ← b} with abducibles A = {a, b} and integrity
constraints I = { ← not p, not q }, the query ?- r would first lead to abducing b for
solving r, and then generate the negative goal ← not p, not q. Because b entails q, this
goal is already solved, but a backward abductive procedure would not know this and
would split the negative goal into the positive goal p and the negative goal ← not q
(which will be reduced to q). Unfortunately, this would abduce a to achieve p, leading
to a non-minimal solution.4 (In other words, we are “repairing” an already repaired
integrity constraint.) Again, propagating b forward to q would allow us to inactivate
the negative goal ← not p, not q before splitting it.

This situation does not arise in planning with independent fluents (i.e. without state
constraints). Several negated literals can appear in negative goals only due to the state
constraints (8) (after unfolding holds to not clipped). The presence of state constraints
therefore complicates partial-order planning to a significant extent. (The solution to
the frame problem offered by partial-order planning is especially simple in the case of
independent fluents.)

For example, consider the actions {initiates(a1,¬p), initiates(a2,¬q), initiates(a2,r), initi-
ates(b1,p), initiates(b2,q), initiates(b3,s)}, the state constraint

← holds(p,T), holds(q,T), holds(s,T)
and the goal ?- holds(r,tfin),…. Further assume that actions a2, b1, b2, b3 solve all
positive goals and have already been placed in the plan: happens(a2,t), hap-
pens(b1,t1), happens(b2,t2), happens(b3,t3), together with the ordering constraints t1<t3,

4 SLDNFA has this problem too. Due to its syntactical restrictions, ACLP cannot even deal
directly with this example.

t2<t3, t2<t, t<t3. Now, the integrity constraint will be successively unfolded to the
negative goals:
← happens(b1,T1), not clipped(T1,p,T), T1<T,
 happens(b2,T2), not clipped(T2,q,T), T2<T,
 happens(b3,T3), not clipped(T3,s,T), T3<T.
← not clipped(t1,p,T), not clipped(t2,q,T), not clipped(t3,s,T),
 T>max(t1,t2,t3).
(the last step corresponds to the resolution with the abducibles happens(bi,ti)).
The last negative goal is already solved because the presence of a2 in the plan
ensures that clipped(t2,q,t3) holds. Solving the negative goal by splitting, for exam-
ple by generating the positive subgoal ?- clipped(t1,p,T), T>max(t1,t2,t3) would place
the additional unnecessary action a1 in the plan.

A careful analysis of existing abductive procedures shows that both problems men-
tioned above involve reachieving an already achieved goal and are related to the
treatment of implicit disjunctions by splitting.

We argue that in both cases we should avoid splitting disjunctions when these are
already achieved. This will not guarantee the minimality of the first solution, but it
will at least avoid reachieving already achieved goals. Of course, the minimal solution
is in the search space, but in general we cannot guarantee obtaining it in polynomial
time. More precisely, the problem of finding a (locally) minimal5 explanation in an
abductive problem with integrity constraints is NP-complete, even in the propositional
case (Theorem 4.5 of [10]).

For example, considering the same ALP program P = {p ← a, q ← b, q ← a} as
above, the query ?- q, p will lead in our framework to the non-minimal abductive ex-
planation b,a. Note however, that the minimal solution a is in the search space and will
be found upon backtracking.

3 Propagating abductive changes

We have seen that the planning problem can be formulated as an abductive prob-
lem. The main efficiency problem faced by all implemented abductive procedures
is avoiding testing all integrity constraints after each abductive change. Since the
integrity constraints have been tested before the change, we should retest only the
ones that are influenced by the change in some abducible. For example, for
achieving this, ACLP [4] requires each integrity constraint (IC) to contain at least
an abducible predicate. The current implementation also requires each non-
abducible positive condition in an IC not to depend on abducible predicates. If it
does, as it is usually the case, the user would have to unfold the predicate in the
IC with its definition until its dependence on the abducibles is made explicit.
These strong requirements are needed so that there are only direct influences of
changing abducibles on ICs. If this limitation is removed, then we need to be able
to determine which predicates are (indirectly) influenced by a change in an ab-
ducible. This can be achieved by forward propagation of the abductive changes
from abducibles to other predicates occurring in ICs.

5 parsimonious in the terminology of [10].

In the following we propose a mixed abductive procedure combining backward goal
reduction rules with forward propagation rules for the abductive changes. In this
problem solving strategy, the goals are reduced backwards to abducibles and con-
straints, which are then propagated forward (“saturated” to a complete solution). The
role of the forward propagation rules is not only to detect inconsistencies, but also to
repair any potential inconsistencies (by adding new abducibles and/or constraints).
Instead of retesting all ICs after each modification, we propagate the change through
the ICs and suggest repairs that ensure that the ICs are not violated.

3.1 Constraint Handling Rules

Constraint Handling Rules (CHRs) [3] represent a flexible approach to develop-
ing user-defined constraint solvers in a declarative language. As opposed to typi-
cal constraint solvers, which are black boxes, CHRs represent a 'no-box' ap-
proach to CLP. CHR propagation rules are ideal candidates for implementing the
rules for forward propagation of abductive changes.

CHRs can be either simplification or propagation rules.
A simplification rule Head ⇔ Guard | Body replaces the head constraints by the

body provided the guard is true (the Head can contain multiple CHR constraint at-
oms).

Propagation rules Head ⇒ Guard | Body add the body constraints to the constraint
store without deleting the head constraints (provided the guard is true). A third, hybrid
type of rules, simpagation rules Head1 \ Head2 ⇔ Guard | Body replace Head2 by
Body (while preserving Head1) if Guard is true. (Guards are optional in all types of
rules.)

4 Transforming ALPs into CHRs

In the following, we present a general transformation from an Abductive Logic
Program (ALP) into a set of Constraint Handling Rules (CHRs), which function
as an abductive procedure for the given ALP. We also illustrate the transforma-
tion on the example of partial-order planning with dependent fluents.

We start from an ALP 〈P,A,I〉. In the case of partial-order planning, we will use the
ALP (3)-(8) from Section 2. Our goal is to replace the integrity constraints (ICs)
(which would naively have to be retested after each abductive step) by forward rules
for propagating abductive changes. This is useful both for detecting inconsistencies
and for suggesting repairs. However, not every predicate in an IC can be the target of
forward propagation - such predicates would have to be unfolded (backwards) until
"forward" predicates are reached.

Since the specific problem may require certain predicates or rules to be "backward"
-- even if they could in principle be "forward" -- we allow them to be explicitly de-
clared as "backward".6 (This is obviously a problem-dependent specification.)

The transformation rules below will automatically determine the status (for-
ward/backward) of the predicates and rules that are not explicitly declared as "back-
ward".

Note that the transformation of ALPs into CHRs presented below is completely
general (it works for any ALP program, not just for our planning domain).

 1 First, we determine which rules and predicates can be treated by forward propa-
gation (or, in short, are "forward"). (Rules and predicates which are not "forward" are
called "backward" and will have to be treated by unfolding.)
• Abducibles (like happens in our planning domain) are automatically "forward".
The occurrences of such abducibles p in rule bodies will be replaced by con-
straints Cp. (Intuitively, Cp denotes the "open" part of predicate p. Technically,
Cp is used to trigger the forward propagation rules for p -- see (*) below).
• An ALP rule can be "forward" only if all its body literals are "forward". In particu-
lar, rules with negative literals in the body cannot be used as forward rules (for ex.
rule (3)).
• Predicates which appear in the head of at least one "forward" ALP rule are them-
selves "forward".

 2 Then, we replace the ICs by forward propagation rules. For each IC, we unfold
the positive literals - in all possible ways with their "backward" rules only - until we
are left with positive "forward" literals, negative literals or constraints:

← p1, …, pn, not q1, …, not qm, c1, …, ck
Such an unfolded IC is replaced by the forward propagation rule

 Cp1, …, Cpn ⇒ ∼c1 ; … ; ∼ck ; c,(q1 ; … ; qm) (*)
where ∼ci is the complement of the constraint ci and c is the conjunction c1, …, ck
(we apply a sort of semantic splitting w.r.t. the constraints).

This forward rule exactly captures the functioning of the abductive procedure,
which waits for p1, …, pn and only then treats the remaining body by splitting. Note
that the subgoal qj is propagated (rather than the constraint Cqj). Solving the subgoal
qj amounts to constructively ensuring that the IC is not violated (this functions as a
constructive "repair" of a potential IC violation).

 3 Finally, we replace negative literals not p in bodies of "backward" rules by con-
straints Cnot_p (whose role will be to protect against any potential inconsistencies
with some p).7 For each such negative literal we add the IC ← not_p, p, which will
be treated as in step (2) above.

6 For example, in our planning domain, we may wish to avoid propagating the initial state

forward, especially if we are dealing with a database having a huge number of records.
7 Unlike "normal" abducibles which are implicitly "minimized", abducibles of the form Cnot_p

are subject to a maximization policy. Thus, we cannot expect all instances Cnot_p to be ex-

In our planning domain, rule (3) is backward because it has a negative literal (not
clipped) in the body.

Rules with constraints8 in the body could be used as forward rules, but they would
propagate disjunctions (treated by splitting), which should be avoided. (4) will there-
fore be treated backward because of the constraints '<' in its body.

(5) will be treated backward because propagating the initial state of a database for
example (having a huge number of records) is infeasible in practice.

(6) can be treated as forward, so starts will be a "forward" predicate: 9
Chappens(A,T), initiates(A,F) ⇒ Cstarts(F,T) (9)

Similarly, the IC (7) induces the forward rule
Chappens(A,T), precondition(A,F) ⇒ holds(F,T) (10)

(The action description predicates precondition and initiates are "static con-
straints", i.e. constraints that are given at the beginning of the problem solving
process and which do not change.)

Finally, the ICs (8) related to state constraints are unfolded (since holds is a back-
ward predicate) to

← starts(F1,T1), not clipped(T1,F1,T), T1<T, …,
 starts(Fn,Tn), not clipped(Tn,Fn,T), Tn<T.

which induce the forward rules
Cstarts(F1,T1), …, Cstarts(Fn,Tn) ⇒ T>max(T1, …,Tn), (11)

 (clipped(T1,F1,T) ; … ; clipped(Tn,Fn,T)).
(The first disjunct, T<max(T1, …,Tn), of the consequent could be dropped since it
mentions the free variable T.)

Since starts also has a backward rule (5), the IC (8) also unfolds to
← …, initially(Fik), not clipped(0,Fik,T), …,

 …, starts(Fjl,Tjl), not clipped(Tjl,Fjl,T), Tjl<T, …
The induced propagation rule is

…, Cstarts(Fjl,Tjl), … ⇒ … ; ~initially(Fik) ; … ; (12)
 initially(Fi1), …, initially(Fim), T>max(Tj1, …),

 [… ; clipped(0,Fik,T) ; … ; … ; clipped(Tjl,Fjl,T) ; …]
Finally, the IC

← not_clipped(T0,F,T), clipped(T0,F1,T), F=F1
is unfolded with (4) to

← not_clipped(T0,F,T), starts(¬F1,T1), T0<T1, T1<T, F=F1
and, since starts still has a "backward" rule (5), also to

← not_clipped(T0,F,T), initially(F1), T0<0, 0<T, F=F1
The latter IC can be dropped since T0<0 is inconsistent with the general con-
straint 0<T0. The forward propagation rule induced by the first IC is

Cnot_clipped(T0,F,T), Cstarts(¬F,T1) ⇒ F≠F1 ; F=F1,(T0>T1 ; T1>T) (13)

plicitly propagated and we should therefore avoid having to forward propagate Cnot_p.
not_p will thus be a backward predicate, used just to avoid violations of the IC ← not_p, p.

8 Here, by constraints we mean predicates for which the Closed World Assumption does not
hold. For example, the absence of T1<T2 from the constraint store does not entail T1≥T2.

9 Having both backward and forward versions of rule (6) does not lead to redundancies or
loops. The role of the backward rule is to reduce a goal formulated in terms of starts(F,T) to
assuming the abducible Chappens(A,T) for an action A that initiates F. Then the forward rule
propagates all other effects of A (not just the one that triggered the action application).

We have thus obtained the following set of rules
Backward goal reduction rules
holds(F,T) ⇔ starts(F,T0), T0<T, Cnot_clipped(T0,F,T) (14)
starts(F,T) ⇔ initially(F), T=0 ; initiates(A,F), Chappens(A,T) (15)
clipped(T0,F,T) ⇔ starts(¬F,T1), T0<T1, T1<T (16)

Forward propagation rules: (9)-(13).
We also have a general rule for all constraint predicates p:

Cp(X1) \ p(X2) ⇔ X1=X2 ; X1≠X2, p(X2) (17)
which is given a higher priority than the other rules and which tries to solve a
goal p(X2) by reusing an already existing constraint Cp(X1) (propagated earlier by
a forward rule). This rule also leaves the alternative of constructively achieving
p(X2) open.

4.1 An improved CHR implementation

While the above approach avoids reachieving already solved positive goals, it
doesn't avoid splitting when dealing with negative literals in negative goals (in
our case 'not clipped' in negative goals originating from state constraints). An
improved implementation would have to explicitly represent the disjunctive goals
(involving clipped) before actually splitting them.

We shall represent partially activated state constraints as ic(Head ← Body) (the ini-
tial state constraints have the form ic(fail ← Body)). Like in rule (11), such integrity
constraints are (partially) activated by Cstarts(F,T) constraints:
 Cstarts(F1,T), ic(Head ← F2, Body) ⇒ F1=∃F2, ic(Head ; ¬F2|T ← Body) (18)
 ; ~(F1=∃F2)
where ¬F|T denotes the fact that the IC has been activated by a fluent F becom-
ing true at time point T (F1=∃F2 is defined in Section 5.2 below).

The following rule inactivates an IC if a pair of its activating starts literals is
clipped:

Cstarts(¬F,T), Ti<T, T<Tj \ ic(Head;¬Fi|Ti;¬Fj|Tj ← Body) ⇔ (19)
 F=Fi ; ~(F=Fi), ic(Head;¬Fi|Ti;¬Fj|Tj ← Body)

(Note that this rule has the form Cclipped \ ic ⇔ true, or even
Cclipped \ (clipped ; … ; clipped) ⇔ true.)

Finally, if an IC has been completely activated (without being inactivated by the
previous rule, which has higher priority), then we should clip at least a pair of starts
literals that activated it:

ic(Head ← true) ⇒ ic_clip(Head) (20)
Note that it is sufficient to clip a pair (¬Fi|Ti, ¬Fj|Tj) such that Ti has no known
antecedent (w.r.t. the temporal order) in the set of activators, while Tj has no
known successor:

ic_clip(Head) :-
 lower_bound(Head, ¬Fi|Ti), upper_bound(Head, ¬Fj|Tj), clipped(Ti, Fi, Tj).

We also have to deal with the possibility of ICs being activated by the initial state
(while avoiding the forward propagation of the initial state):

ic(Head ← Body) ⇒ forall Body = F1, …, Fk such that initially(Body) (21)
 ic(¬F1|0 ; … ; ¬Fk|0 ; Head ← true).

The ICs propagated by these rules can of course be inactivated by the previous
inactivation rule (19). (Note that in the improved approach rules (18)-(21) replace
rules (11) and (12).)

The above rules have been directly implemented in the ECLiPSe as well as SICStus
CHR environments. We have run tests comparing a simple partial order planner for
independent fluents (similar to UCPOP and SNLP) with the planner described above
and noticed no overheads (due to the treatment of dependent fluents) on planning
problems with independent fluents. Since there are no other planners dealing with
non-ground plans and dependent fluents, no standard benchmarks are currently avail-
able. However, we have successfully tested the planner on query planning problems in
system integration, where dependent fluents occur naturally (as briefly described in
the Introduction).

5 A general abductive procedure

In order to better clarify the relationship of our approach to existing abductive
procedures, we present in the following a general abductive procedure that tack-
les the above-mentioned non-minimality problems by allowing a limited form of
forward reasoning in addition to backward goal-directed reasoning. The proce-
dure doesn't aim at improving the implementation from Section 4.1, its main role
being to generalise the approach from the previous Sections. The transformation
algorithm from Section 4, which compiles an ALP to CHRs is replaced by a gen-
eral abductive algorithm that interprets the ALP directly. Of course, an inter-
preter is slower than a compiled procedure. However, besides providing a clarifi-
cation of our approach, the general abductive procedure can also be used as an
intermediate step for proving the soundness and completeness of our partial-order
planning algorithm for dependent fluents. (The implementation from Section 4.1
above is more efficient due to its direct encoding in CHR, as opposed to using
CHR just for interpreting positive and negative goals, as below. A number of
problem and domain dependent decisions, such as declaring certain predicates to
be "backward", also influence the efficiency of the implementation from Section
4.1. Let us stress the fact that these decisions are entirely domain and problem
dependent and that they are not a drawback of our general mechanism.)

5.1 Open predicates

In Logic Programming, normal predicates are closed: their definition is assumed
to be complete (Clark completion). On the other hand, abducibles in Abductive
Logic Programming (ALP) are completely open, i.e. they can have any extension
consistent with the integrity constraints. To formally deal with forward propaga-
tion rules in an abductive framework, we need to allow a generalization of ab-
ducibles, namely (partially) open predicates.

Unlike abducibles, open predicates can have definitions p ← Body, but these are not
considered to be complete, since during the problem solving process we can add (by

forward propagation) new abductive instances of p to these definitions. The definition
of an open predicate therefore only partially constrains its extension.

In our CHR embedding of the abductive procedure we shall use two types of con-
straints, p and Cp, for each open predicate p. While Cp represent facts explicitly
propagated (abduced), p refers to the current closure of the predicate p (i.e. the ex-
plicit definition of p together with the explicitly abduced literals Cp). Thus, informally
we have p = def(p) ∨ Cp.

While propagating Cp amounts to simply assuming p to hold (abduction), propa-
gating p amounts to trying to prove p either by using its definition def(p), or by reusing
an already abduced fact Cp.10 This distinction ensures that our CHR embedding con-
forms to the usual ‘propertyhood view’ on integrity constraints:

Definition M(∆) is a generalized stable model of the abductive logic program 〈P,A,I〉
for the abductive explanation ∆ ⊆ A iff

(1) M(∆) is a stable model of P ∪∆, and (2) M(∆) |= I.

The distinction between propagating Cp and p respectively can be seen best in an
example. When an action is applied, Chappens(A,T), we have to propagate its effects
Eff as well as its preconditions Pre. But while propagating the effects simply involves
the propagation of the constraint Cstarts(Eff,T), propagating the preconditions should
entail posting the goal holds(Pre,T),11 which amounts to trying to achieve Pre either by
using its definition (and thus applying another action having Pre as an effect), or by
reusing an already achieved fact.

The use of open predicates allows mixing forward propagation of abduced predi-
cates Cp with backward reasoning using the closures p. Forward propagation can be
implemented using CHR propagation rules, while backward reasoning involves un-
folding predicates with their definitions. The definition def(p, Body) of a predicate p is
obtained by Clark completion of its ‘if’ definitions. For each such predicate we will
have an unfolding rule (a CHR simplification rule) p ⇔ def(p, Body) Body, but also a
CHR simpagation rule12 for matching a goal p with an existing abduced fact Cp:

Cp(X1) \ p(X2) ⇔ X1=X2 ; X1≠X2, p(X2).
This rule should be given a higher priority than the unfolding rule in order to
avoid reachieving an already achieved goal. Combined with the forward propa-
gation mechanism for Cp, it deals with the first non-minimality problem men-
tioned in Section 2. Note that, for completeness, we are leaving open the possi-
bility of achieving p(X2) using its definition or reusing other abduced facts.

Our treatment of open predicates p = def(p) ∨ Cp is slightly different than the usual
method [8] of dealing with (partially) open predicates p by introducing a new predi-
cate name p' (similar to our Cp) and adding the clause p ← p' to the definition of p:

10 Abducibles (i.e. completely open predicates) p have no definition and are thus referred to as
Cp.

11 This is done by the CHR rule (10) which corresponds to the ALP integrity constraint (7). Note
that while program clauses propagate Cp constraints, integrity constraints propagate goals p, in
line with Lin and Reiter’s observation [6] that state (integrity) constraints are usually intimately
tied with the qualification problem.

12 The rule is more complicated in practice, due to implementation details.

{p ← Def, p ← p'}. (**)
The difference is that whenever referring to p we are implicitly trying to prove p,
either by using its definition def(p) or by reusing an already abduced fact Cp, but
without allowing such a Cp to be abduced in order to prove p (whereas in (**)
treating p ← p' as a program clause13 would allow p' to be abduced when trying
to prove p). This is crucial for ensuring a correct distinction14 between goals p
and abducibles Cp mentioned above (otherwise we would treat the propagation of
action preconditions incorrectly). Without making this distinction, we wouldn’t
even be able to refer to the current closure of p.

5.2 The abductive procedure

The abductive procedure for open predicates given below is written using CHR
rules.15 We assume that conjunction ',' and disjunction ';' in positive goals are
dealt with implicitly (disjunction being treated by splitting). Integrity constraints
←G are represented as negative goals not(G).16 The order of rules does matter:
the first rule matching a newly introduced constraint will be activated. If it is a
simplification rule, the subsequent rules will not get the chance to be executed.

In the rules below, we let p denote a predicate (possibly with variables). Multiple
occurrences of p in a rule involves the unification of the corresponding literals. We
also write p(X) (with X a tuple of variables) whenever we want to make the variables
of p explicit.

Positive goals
[POS-ABD] Cp(X1)\ p(X2) ⇔ X1=X2 ; ~(X1=X2), p(X2).
[POS-UNF] p ⇔ def(p, Body)  Body.

Negative goals
[NEG-T,F] not(true) ⇔ fail.

not(fail) ⇔ true.
[NEG-UNF] not(p, G) ⇒ def_(p,Body)  not(Body, G).
[NEG-ABD] Cp(X1) \ not(p(X2), G) ⇔

 not(X1=∃X2, G), not(p(X2), ~(X1=∃X2), G)
[NEG-DISJ] not((p1; p2), G) ⇔ not(p1, G), not(p2, G).
[NEG-INACT] Cp(X1) \ not(G1, not p(X2), G2) ⇔ no∀vars(X2) 

 X1=X2 ; ~(X1=X2), not(G1,not p(X2), G2)
[NEG-SPLIT] not(not p(X), G) ⇔ no∀vars(X)  p(X) ; not(p(X)), not(G).

13 In fact, p ← p' should be treated as an integrity constraint and not as a program clause.
14 This distinction is essential only for partially open predicates and not for completely open

predicates (abducibles).
15 For lack of space, we omit the treatment of built-in constraints.
16 'not' is here a CHR constraint and should not be confused with the negation as failure operator

used in logic programming.

The abductive procedure presented above is change-oriented, since a change in the
abducible Cp will trigger in rule [NEG-ABD] a matching negative goal, as in other
abductive procedures. The main difference lies however in that Cp can be any open
predicate, not just a completely open one. Such open predicates can be targets of for-
ward propagation rules: Body ⇒ Cp. If these propagation rules represent the forward
direction of some program rules p ← Body, then these program rules may be excluded
when unfolding negative goals in [NEG-UNF]. There, def_(p, Body) returns the back-
ward definitions of p, i.e. the Clark completion of the program rules for which no
forward propagation rules have been written. For predicates p with no backward defi-
nition (for example for abducibles), def_(p, Body) returns Body = fail and the rule
[NEG-UNF] propagates not(fail) i.e. true.

The main improvements of this abductive procedure consist in solving the problems
of reachieving already achieved goals (mentioned in Section 2):

• in the case of positive goals by forward propagation
• in the case of negative literals in negative goals by inactivating the negative goals

(using [NEG-INACT], whenever possible) before splitting them (using [NEG-
SPLIT]). This also relies on forward propagation.

Negative goals can contain both universal (∀) and existential (∃) variables (the latter
correspond to anonymous constants occurring in the constraint store). For variable
tuples X1 and X2 we denote by X1=∃X2 the set of equations obtained after eliminating
(unifying away) the ∀ variables.17 The no∀vars(X) condition in the guard of [NEG-
SPLIT] succeeds whenever the variable tuple X contains no universal variables. Its
role is to avoid floundering. not(p(X)) in the second disjunct of the consequent of
[NEG-SPLIT] implements a form of semantic splitting.

We have assumed conjunctions in the above algorithm to be ordered by a selection
function. The selection function in a negative goal would typically prefer completely
open predicates to other predicates and leave negative literals at the end. To avoid
floundering, it would also try to choose only negative literals with no universal vari-
ables.

Our abductive procedure can be easily proved to be sound and complete. (The for-
mal proof - which cannot be given here for lack of space - extends the standard proof
for SLDNFA [2].)

For solving the planning problem with our general abductive procedure, we can
simply use the general abductive logic program given by (3)-(8) together with the for-
ward propagation rule (9) for starts. (Thus the rule (6) is "forward", the other ones,
namely (3)-(5), being labeled "backward".)

17 For example, if X1=[Y,Z,Z], X2=[A,B,C] with Y,Z ∀ variables and A,B,C ∃ variables, X1=∃X2 is

the set of equations {B=C} obtained after getting rid of Y and Z by Y=A, Z=B. We consider
both cases X1=∃X2 and ~(X1=∃X2) in order to leave open the possibility that B≠C.

6 Concluding remarks

Several related works, such as [9], use forward propagation for incrementally check-
ing the consistency of deductive databases. Although they use forward propagation,
the Kowalski-Sadri [10] and related algorithms are not appropriate for our purposes,
since they only check the consistency of an update. The intermediate forwardly propa-
gated facts are neither retained, nor reused after the check. These algorithms are there-
fore of no help to us for avoiding reachieving in a different way an already achieved
goal.

On the other hand, the Suspended Logic Programs (SLPs - similar with Fung's IFF
procedure) of [5], also allow a combination of backward goal-oriented reasoning with
forward propagation of necessary properties. SLPs are very similar to CHRs in that
insufficiently instantiated goals (that do not match any head of their iff definitions) are
suspended. Thus, suspension is used as a mechanism for avoiding the combinatorial
explosions that would be entailed by unfolding insufficiently instantiated goals. In-
stead of unfolding them, forward rules18 are used to propagate the properties of such
suspended goals in the hope of discovering any potential inconsistencies or for further
instantiating the goal variables and thus allowing their unfolding.

Unfortunately, the propagated properties have to be unfolded as well, which may
lead to a blow-up of the computation, unless special care is given to suspension con-
trol.19 In our terminology, such SLP propagation rules propagate goals of the form p
(which are subject to unfolding, leading to potential blow-ups), while we only propa-
gate forward constraints of the form Cp (which are not subject to unfolding). Thus,
SLPs represent a more general architecture (very much like CHRs), while we are
developing a more specific abductive procedure, being more concerned with dealing
with the non-minimalities in existing abductive procedures.

As far as we know, our planner is the first sound and complete partial-order planner
able to deal with dependent fluents and non-ground plans. The prototype CHR imple-
mentation has been successfully tested as query planner of the mediator in the frame-
work of system integration.

Acknowledgments

The work presented here has been partially supported by the European Community
project SILK (IST-11135).

18 Similar to CHR propagation rules.
19 In fact, Wetzel started studying the use of deletion rules [11] for alleviating the blow-up of

propagated properties.

References

[1] Denecker M., Missiaen L., Bruynooghe M. Temporal reasoning with abductive event cal-
culus, ECAI-92, 384-388.

[2] Denecker M., DeSchreye D. SLDNFA: an abductive procedure for abductive logic pro-
grams, J.Logic Programming 34(2),111-167, 1998.

[3] Fruewirth T. Constraint Handling Rules, in Podelski A. (ed) Constraint Programming:
Basic and Trends, LNCS 910, 90-107, 1995.

[4] Kakas A., Michael A., Mourlas C. ACLP: a case for non-monotonic reasoning, Proc.
NM’98.

[5] Kowalski R., Toni F., Wetzel G. Executing suspended logic programs, Fundamenta Infor-
maticae 34 (1998), 1-22.

[6] Lin F., Reiter R. State constraints revisited, JLC4(5), 655-678.
[7] Shanahan M. An abductive event calculus planner, JLP44 (2000)
[8] Kakas A., Kowalski R., Toni F. The role of abduction in logic programming, Handbook of

logic in AI and LP 5, OUP1998, 235-324.
[9] Kowalski R., Sadri F., Soper P. Integrity checking in deductive databases, VLDB’97.
[10] Bylander T., Allemang D., Tanner M.C., Josephson J.R. The computational complexity of

abduction, AIJ 49(1-3), pp. 25-60, 1991.
[11] Wetzel G. Using integrity constraints as deletion rules, Proc. DYNAMICS’97, 147-161,

1997.

